Lagrange's Trigonometric Identities/Sine/Cosine Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{k \mathop = 0}^n \sin k \theta = \dfrac {\map \cos {\frac 1 2 \theta} - \map \cos {n \theta + \frac 1 2 \theta} } {2 \map \sin {\frac 1 2 \theta} }$


Proof

\(\ds \map \sin {\alpha} \map \sin {\beta}\) \(=\) \(\ds \dfrac {\map \cos {\alpha - \beta} - \map \cos {\alpha + \beta} } 2\) Werner Formula for Sine by Sine
\(\ds 2 \map \sin {\beta} \map \sin {\alpha}\) \(=\) \(\ds \map \cos {\alpha - \beta} - \map \cos {\alpha + \beta}\) rearranging
\(\ds 2 \map \sin {\frac 1 2 \theta} \cdot \map \sin {k \theta}\) \(=\) \(\ds \map \cos {k \theta - \frac 1 2 \theta} - \map \cos {k \theta + \frac 1 2 \theta}\) setting $\alpha = k \theta$ and $\beta = \frac 1 2 \theta$
\(\ds 2 \map \sin {\frac 1 2 \theta} \cdot \sum_{k \mathop = 0}^n \map \sin {k \theta}\) \(=\) \(\ds \sum_{k \mathop = 0}^n \map \cos {k \theta - \frac 1 2 \theta} - \map \cos {k \theta + \frac 1 2 \theta}\) Summing both sides


The right hand side is a telescoping sum.

\(\ds 2 \map \sin {\frac 1 2 \theta} \cdot \sum_{k \mathop = 0}^n \map \sin {k \theta}\) \(=\) \(\ds \map \cos {\frac {-1} 2 \theta} - \map \cos {n \theta + \frac 1 2 \theta}\) only two terms survive
\(\ds 2 \map \sin {\frac 1 2 \theta} \cdot \sum_{k \mathop = 0}^n \map \sin {k \theta}\) \(=\) \(\ds \map \cos {\frac 1 2 \theta} - \map \cos {n \theta + \frac 1 2 \theta}\) Cosine Function is Even
\(\ds \sum_{k \mathop = 0}^n \map \sin {k \theta}\) \(=\) \(\ds \frac {\map \cos {\frac 1 2 \theta} - \map \cos {n \theta + \frac 1 2 \theta} }{ 2 \map \sin {\frac 1 2 \theta} }\) rearranging

$\blacksquare$

Also see