Laplace Transform of Bessel Function of the First Kind/Proof 2
Jump to navigation
Jump to search
Theorem
Let $J_n$ denote the Bessel function of the first kind of order $n$.
Then the Laplace transform of $J_n$ is given as:
- $\laptrans {\map {J_n} {a t} } = \dfrac {\paren {\sqrt {s^2 + a^2} - s}^n} {a^n \sqrt {s^2 + a^2} }$
Proof
\(\ds \laptrans {t^2 \frac {\d^2 x} {\d t^2} + t \frac {\d x} {\d t} + (t^2-\alpha^2)x} s\) | \(=\) | \(\ds 0\) | Laplace Transform of Bessel's Equation | |||||||||||
\(\ds \frac {\d^2} {\d s^2}\mathcal{L}[x''] - \frac \d {\d s} \mathcal{L}[x'] + \frac {\d^2} {\d s^2} \mathcal{L}[x] - \alpha^2 \mathcal{L} [x]\) | \(=\) | \(\ds 0\) | setting the initial conditions as $x(0)=1,\ x'(0)=0$ | |||||||||||
\(\ds (s^2+1) \mathcal{L}''[x] + 3 s \mathcal {L}'[x] + (1 - \alpha^2) \mathcal{L}[x]\) | \(=\) | \(\ds 0\) | Make the following change of variable $u = \sqrt {s^2 + 1} \mathcal {L} [x]$ | |||||||||||
\(\ds u'' \sqrt {s^2 + 1} + \dfrac s {\sqrt {s^2 + 1} } u'\) | \(=\) | \(\ds \frac {\alpha^2 u} {\sqrt {s^2 + 1} }\) | ||||||||||||
\(\ds (u' \sqrt {s^2 + 1} )'\) | \(=\) | \(\ds \frac {\alpha^2 u} {\sqrt {s^2 + 1} }\) | multiplying both sides by $u' \sqrt {s^2 + 1}$ | |||||||||||
\(\ds \frac 1 2 ( (u' \sqrt {s^2 + 1} )^2)'\) | \(=\) | \(\ds \frac 1 2 \alpha^2 (u^2)'\) | ||||||||||||
\(\ds u' \sqrt {s^2 + 1}\) | \(=\) | \(\ds -\alpha u\) | Constant of Integration removed by the Final Value Theorem of Laplace Transform | |||||||||||
\(\ds \int \frac 1 u \rd u\) | \(=\) | \(\ds \int -\frac \alpha {\sqrt {s^2 + 1} } \rd s\) | ||||||||||||
\(\ds \map \ln u\) | \(=\) | \(\ds \alpha \ln (\sqrt {s^2 + 1} - s)\) | ||||||||||||
\(\ds u\) | \(=\) | \(\ds (\sqrt {s^2 + 1} - s)^\alpha\) | reverting the substitution | |||||||||||
\(\ds \mathcal{L} [x]\) | \(=\) | \(\ds \dfrac {\paren {\sqrt {s^2 + 1} - s}^\alpha} {\sqrt {s^2 + 1} }\) |
Hence:
\(\ds \mathcal{L}[J_\alpha (t)](s)\) | \(=\) | \(\ds \dfrac {\paren {\sqrt {s^2 + 1} - s}^\alpha} {\sqrt {s^2 + 1} }\) |
$\blacksquare$