Laplace Transform of Power
Jump to navigation
Jump to search
Theorem
Laplace Transform of Positive Integer Power
Let $\laptrans f$ denote the Laplace transform of a function $f$.
Let $t^n: \R \to \R$ be $t$ to the $n$th power for some $n \in \N_{\ge 0}$.
Then:
- $\laptrans {t^n} = \dfrac {n!} {s^{n + 1} }$
for $\map \Re s > 0$.
Laplace Transform of Real Power
Let $n$ be a constant real number such that $n > -1$
Let $f: \R \to \R$ be the real function defined as:
- $\map f t = t^n$
Then $f$ has a Laplace transform given by:
\(\ds \laptrans {\map f t}\) | \(=\) | \(\ds \int_0^\infty e^{-s t} t^n \rd t\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \Gamma {n + 1} } {s^{n + 1} }\) |
where $\Gamma$ denotes the gamma function.
Laplace Transform of Complex Power
Let $q$ be a constant complex number with $\map \Re q > -1$.
Let $t^q$ be the the principal branch of the $q$-th complex power whose domain contains the half-plane $\map \Re s > 0$.
Then $t^q$ has a Laplace transform given by:
- $\laptrans {t^q} = \dfrac {\map \Gamma {q + 1} } {s^{q + 1} }$
where $\Gamma$ denotes the gamma function.