Laplace Transform of Positive Integer Power
Theorem
Let $\laptrans f$ denote the Laplace transform of a function $f$.
Let $t^n: \R \to \R$ be $t$ to the $n$th power for some $n \in \N_{\ge 0}$.
Then:
- $\laptrans {t^n} = \dfrac {n!} {s^{n + 1} }$
for $\map \Re s > 0$.
Proof 1
\(\ds \laptrans {t^n}\) | \(=\) | \(\ds \int_0^{\to +\infty} t^n e^{-s t} \rd t\) | Definition of Laplace Transform | |||||||||||
\(\ds \) | \(=\) | \(\ds \intlimits {\frac {e^{-s t} } {-s} \sum_{k \mathop = 0}^n \paren {\paren {-1}^k \frac {n^{\underline k} t^{n - k} } {\paren {-s}^k} } } {t \mathop = 0} {t \mathop \to +\infty}\) | Primitive of $x^n e^{a x}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^n \paren {0 - \frac 1 {-s} \paren {-1}^k \frac {n^{\underline k} 0^{n - k} } {\paren {-s}^k} }\) | Exponential Tends to Zero and Infinity, Exponent Combination Laws: Negative Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^n \paren {\dfrac 1 {s^{k + 1} } n^{\underline k} 0^{n - k} }\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {s^{k + 1} } n^{\underline n}\) | $0^{n - k} = 0$ for all terms except $n = k$, when $0^{n - n} = 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {n!} {s^{k + 1} }\) | Integer to Power of Itself Falling is Factorial |
$\blacksquare$
Proof 2
The proof proceeds by induction on $n$ for $t^n$.
For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition:
- $\laptrans {t^n} = \dfrac {n!} { s^{n + 1} }$
Basis for the Induction
$\map P 0$ is the case:
\(\ds \laptrans {t^0}\) | \(=\) | \(\ds \laptrans 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 s\) | Laplace Transform of 1 | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {0!} {s^{0 + 1} }\) | Definition of Factorial: $0! = 1$ |
This is the basis for the induction.
Induction Hypothesis
Now it needs to be shown that if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.
So this is the induction hypothesis:
- $\laptrans {t^k} = \dfrac {k!} {s^{k + 1} }$
from which it is to be shown that:
- $\laptrans {t^{k + 1} } = \dfrac {\paren {k + 1}!} {s^{k + 2} }$
Induction Step
This is our induction step:
\(\ds \laptrans {t^{k + 1} }\) | \(=\) | \(\ds \int_0^{\to +\infty} t^{k + 1} e^{-s t} \rd t\) | Definition of Laplace Transform |
From Integration by Parts:
- $\ds \int f g' \rd t = f g - \int f' g \rd t$
Here:
\(\ds f\) | \(=\) | \(\ds t^{k + 1}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds f'\) | \(=\) | \(\ds \paren {k + 1} t^n\) | Power Rule for Derivatives | ||||||||||
\(\ds g'\) | \(=\) | \(\ds e^{-s t}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds g\) | \(=\) | \(\ds -\frac 1 s e^{-s t}\) | Primitive of Exponential Function |
So:
\(\ds \int t^{k + 1} e^{-s t} \rd t\) | \(=\) | \(\ds -\frac {t^{k + 1} } s e^{-s t} + \frac {k + 1} s \int t^k e^{-s t} \rd t\) |
Evaluating at $t = 0$ and $t \to +\infty$:
\(\ds \laptrans {t^{k + 1} }\) | \(=\) | \(\ds -\intlimits {\frac 1 s t^{k + 1} e^{-s t} } {t \mathop = 0} {t \mathop \to +\infty} + \frac {k + 1} s \laptrans {t^n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\intlimits {\frac {s^{-1} t^{k + 1} } {e^{s t} } } {t \mathop = 0} {t \mathop \to +\infty} + \frac {k + 1} s \laptrans {t^n}\) | Exponent Combination Laws | |||||||||||
\(\ds \) | \(=\) | \(\ds 0 - 0 + \frac {k + 1} s \laptrans {t^n}\) | Limit at Infinity of Polynomial over Complex Exponential | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {k + 1} s \times \frac {k!} {s^{k + 1} }\) | Induction Hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {k + 1}!} {s^{k + 1 + 1} }\) | Exponent Combination Laws, Definition of Factorial |
The result follows by the Principle of Mathematical Induction.
$\blacksquare$
Also presented as
Laplace Transform of Positive Integer Power can also be seen presented in the form:
- $\laptrans {\dfrac {t^{n - 1} } {\paren {n - 1}!} } = \dfrac 1 {s^n}$
Also see
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Laplace Transforms of some Elementary Functions: $3$.
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Appendix $\text B$: Table of Special Laplace Transforms: $3.$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 32$: Table of Special Laplace Transforms: $32.27$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 33$: Laplace Transforms: Table of Special Laplace Transforms: $33.27.$