Law of Cosines/Right Triangle

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be a triangle whose sides $a, b, c$ are such that:

$a$ is opposite $A$
$b$ is opposite $B$
$c$ is opposite $C$.

Let $\triangle ABC$ be a right triangle such that $\angle A$ is right.


Then:

$c^2 = a^2 + b^2 - 2 a b \cos C$


Proof

Let $\triangle ABC$ be a right triangle such that $\angle A$ is right.

CosineRule-Proof3-right.png
\(\ds a^2\) \(=\) \(\ds b^2 + c^2\) Pythagoras's Theorem
\(\ds c^2\) \(=\) \(\ds a^2 - b^2\) adding $-b^2$ to both sides and rearranging
\(\ds \) \(=\) \(\ds a^2 - 2 b^2 + b^2\) adding $0 = b^2 - b^2$ to the right hand side
\(\ds \) \(=\) \(\ds a^2 - 2 a b \left({\frac b a}\right) + b^2\) multiplying $2 b^2$ by $\dfrac a a$
\(\ds \) \(=\) \(\ds a^2 + b^2 - 2 a b \cos C\) Definition of Cosine: $\cos C = \dfrac b a$

$\blacksquare$