Law of Excluded Middle/Sequent Form
Jump to navigation
Jump to search
Theorem
The Law of Excluded Middle can be symbolised by the sequent:
- $\vdash p \lor \neg p$
Proof 1
By the tableau method of natural deduction:
Line | Pool | Formula | Rule | Depends upon | Notes | |
---|---|---|---|---|---|---|
1 | $p \lor \neg p$ | Law of Excluded Middle | (None) |
$\blacksquare$
Proof 2
This proof is derived in the context of the following proof system: Instance 2 of the Hilbert-style systems.
By the tableau method:
Line | Pool | Formula | Rule | Depends upon | Notes | |
---|---|---|---|---|---|---|
1 | $\paren {q \implies r} \implies \paren {\paren {p \implies q} \implies \paren {p \implies r} }$ | Theorem Introduction | (None) | Hypothetical Syllogism | ||
2 | $\paren {\paren {p \lor p} \implies p} \implies \paren {\paren {p \implies \paren {p \lor p} } \implies \paren {p \implies p} }$ | Rule $\text {RST} 1$ | 1 | $p \lor p \, / \, q$, $p \, / \, r$ | ||
3 | $\paren {p \lor p} \implies p$ | Axiom $\text A 1$ | ||||
4 | $\paren {p \implies \paren {p \lor p} } \implies \paren {p \implies p}$ | Rule $\text {RST} 3$ | 2, 3 | |||
5 | $p \implies \paren {p \lor p}$ | Axiom $\text A 2$, Rule $\text {RST} 1$ | $p \, / \, q$ | |||
6 | $p \implies p$ | Rule $\text {RST} 3$ | 4, 5 | |||
7 | $\neg p \lor p$ | Rule $\text {RST} 2 \, (2)$ | 6 | |||
8 | $\paren {p \lor q} \implies \paren {q \lor p}$ | Axiom $\text A 3$ | ||||
9 | $\paren {\neg p \lor p} \implies \paren {p \lor \neg p}$ | Rule $\text {RST} 1$ | 8 | $p \, / \, q$, $\neg p \, / \, p$ | ||
10 | $p \lor \neg p$ | Rule $\text {RST} 3$ | 7, 9 |
$\blacksquare$
Proof by Truth Table
We apply the Method of Truth Tables to the proposition $\vdash p \lor \neg p$.
As can be seen by inspection, the truth value of the main connective, that is $\lor$, is $\T$ for each boolean interpretation for $p$.
- $\begin{array}{|c|c|cc|} \hline p & \lor & \neg & p \\ \hline \F & \T & \T & \F \\ \T & \T & \F & \T \\ \hline \end{array}$
$\blacksquare$
Sources
- 1946: Alfred Tarski: Introduction to Logic and to the Methodology of Deductive Sciences (2nd ed.) ... (previous) ... (next): $\S \text{II}.13$: Symbolism of sentential calculus
- 1959: A.H. Basson and D.J. O'Connor: Introduction to Symbolic Logic (3rd ed.) ... (previous) ... (next): $\S 3.6$: Reference Formulae: $RF \, 2$
- 1959: A.H. Basson and D.J. O'Connor: Introduction to Symbolic Logic (3rd ed.) ... (previous) ... (next): $\S 4.7$: The Derivation of Formulae: $D \, 3$
- 1964: Donald Kalish and Richard Montague: Logic: Techniques of Formal Reasoning ... (previous) ... (next): $\text{II}$: 'AND', 'OR', 'IF AND ONLY IF': $\S 5$: Theorem $\text{T59}$
- 2012: M. Ben-Ari: Mathematical Logic for Computer Science (3rd ed.) ... (previous) ... (next): $\S 2.3.3$