Law of Simple Conversion of E

From ProofWiki
Jump to navigation Jump to search

Theorem

Consider the universal negative categorical statement No $S$ is $P$:

$\map {\mathbf E} {S, P}: \forall x: \map S x \implies \neg \map P x$


Then No $P$ is $S$:

$\map {\mathbf E} {P, S}$


Proof

\(\ds \) \(\) \(\ds \map {\mathbf E} {S, P}\)
\(\ds \leadsto \ \ \) \(\ds \forall x: \, \) \(\ds \) \(\) \(\ds \map S x \implies \neg \map P x\) Definition of Universal Negative
\(\ds \leadsto \ \ \) \(\ds \forall x: \, \) \(\ds \) \(\) \(\ds \neg \paren {\map S x \land \map P x}\) Modus Ponendo Tollens
\(\ds \leadsto \ \ \) \(\ds \forall x: \, \) \(\ds \) \(\) \(\ds \neg \paren {\map P x \land \map S x}\) Conjunction is Commutative
\(\ds \leadsto \ \ \) \(\ds \forall x: \, \) \(\ds \) \(\) \(\ds \map P x \implies \neg \map S x\) Modus Ponendo Tollens
\(\ds \leadsto \ \ \) \(\ds \) \(\) \(\ds \map {\mathbf E} {P, S}\) Definition of Universal Negative

$\blacksquare$


Sources