Left Module induces Right Module over same Ring iff Actions are Commutative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +_R, \times_R}$ be a ring.

Let $\struct {G, +_G, \circ}$ be a left module over $\struct {R, +_R, \times_R}$.

Let $\circ': G \times R \to G$ be the binary operation defined by:

$\forall \lambda \in R: \forall x \in G: x \circ' \lambda = \lambda \circ x$


Then $\struct {G, +_G, \circ'}$ is a right module over $\struct {R, +_R, \times_R}$ if and only if:

$\forall \lambda, \mu \in R: \forall x \in G: \paren {\lambda \times_R \mu} \circ x = \paren {\mu \times_R \lambda} \circ x$


Proof

Necessary Condition

Let $\struct {G, +_G, \circ'}$ be a right module over $\struct {R, +_R, \times_R}$.

Then:

\(\ds \paren {\lambda \times_R \mu} \circ x\) \(=\) \(\ds x \circ' \paren {\lambda \times_R \mu}\) Definition of $\circ'$
\(\ds \) \(=\) \(\ds \paren {x \circ' \lambda} \circ' \mu\) Right Module Axiom $\text {RM} 3$: Associativity
\(\ds \) \(=\) \(\ds \mu \circ \paren {\lambda \circ x}\) Definition of $\circ'$
\(\ds \) \(=\) \(\ds \paren {\mu \times_R \lambda} \circ x\) Left Module Axiom $\text M 3$: Associativity

$\Box$


Sufficient Condition

Let the scalar multiplication $\circ$ satisfy:

$\forall \lambda, \mu \in R: \forall x \in G: \paren {\lambda \times_R \mu} \circ x = \paren {\mu \times_R \lambda} \circ x$

It needs to be shown that $\struct {G, +_G, \circ'}$ satisfies the right module axioms.


Right Module Axiom $\text {RM} 1$: (Right) Distributivity over Module Addition

Let $\lambda, \mu \in R, x \in G$.

Then:

\(\ds \paren {x +_G y} \circ' \lambda\) \(=\) \(\ds \lambda \circ \paren {x +_G y}\) Definition of $\circ'$
\(\ds \) \(=\) \(\ds \lambda \circ x +_G \lambda \circ y\) Left Module Axiom $\text M 1$: (Left) Distributivity over Module Addition
\(\ds \) \(=\) \(\ds x \circ' \lambda +_G y \circ' \lambda\) Definition of $\circ'$

$\Box$


Right Module Axiom $\text {RM} 2$: (Left) Distributivity over Scalar Addition

Let $\lambda \in R, x, y \in G$.

Then:

\(\ds x \circ' \paren{\lambda +_R \mu}\) \(=\) \(\ds \paren {\lambda +_R \mu} \circ x\) Definition of $\circ'$
\(\ds \) \(=\) \(\ds \lambda \circ x +_G \mu \circ y\) Left Module Axiom $\text M 2$: (Right) Distributivity over Scalar Addition
\(\ds \) \(=\) \(\ds x \circ' \lambda +_G x \circ' \mu\) Definition of $\circ'$

$\Box$


Right Module Axiom $\text {RM} 3$: Associativity

Let $\lambda, \mu \in R, x \in G$.

Then:

\(\ds x \circ' \paren {\lambda \times_R \mu}\) \(=\) \(\ds \paren {\lambda \times_R \mu} \circ x\) Definition of $\circ'$
\(\ds \) \(=\) \(\ds \paren {\mu \times_R \lambda} \circ x\) Assumption
\(\ds \) \(=\) \(\ds \mu \circ \paren {\lambda \circ x}\) Left Module Axiom $\text M 3$: Associativity
\(\ds \) \(=\) \(\ds \paren {x \circ' \lambda} \circ' \mu\) Definition of $\circ'$

$\blacksquare$


Also see