Legendre Polynomial/Examples/P1
Jump to navigation
Jump to search
Example of Legendre Polynomial
The $1$st Legendre polynomial is:
- $\map {P_1} x = x$
Proof
From Generating Function for Legendre Polynomials, $\map {P_1} x$ is the coefficient of the term in $t^1$ of the generating function:
- $\map G t = \dfrac 1 {\sqrt {1 - 2 x t + t^2} }$
Thus:
\(\ds \map G t\) | \(=\) | \(\ds \dfrac 1 {\sqrt {1 - 2 x t + t^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 - 2 x t + t^2}^{-1/2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \paren {-\dfrac 1 2 } \paren {-2 x t + t^2} + \paren {\dfrac 1 {2!} } \paren {-\dfrac 1 2} \paren {-\dfrac 3 2} \paren {-2 x t + t^2}^2 + \cdots\) | General Binomial Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \paren {x t^1 - 2 t^2} + \dfrac 3 8 \paren {4 x^2 t^2 - 4 x t^3 + t^4} + \cdots\) | Square of Sum and simplifying |
Further terms generate terms in $t$ of higher powers.
Hence the term in $t^1$ is seen to be $x t$.
Hence, by definition of generating function:
- $\map {P_1} x = x$
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 25$: Legendre Functions: Special Legendre Polynomials: $25.4$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): generating function
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Legendre's differential equation
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): generating function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Legendre's differential equation
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 28$: Legendre and Associated Legendre Functions: Special Legendre Polynomials: $28.4.$
- Weisstein, Eric W. "Legendre Polynomial." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LegendrePolynomial.html