Limit at Infinity of Sine Integral Function
Jump to navigation
Jump to search
Theorem
Let $\Si: \R \to \R$ denote the sine integral function.
Then $\Si$ has a (finite) limit at infinity:
- $\ds \lim_{x \mathop \to +\infty} \map \Si x = \frac \pi 2$
Corollary
- $\ds \lim_{x \mathop \to -\infty} \map \Si x = -\frac \pi 2$
Proof
The limit:
- $\ds \lim_{x \mathop \to +\infty} \map \Si x = \lim_{x \mathop \to +\infty} \int_{t \mathop \to 0}^{t \mathop = x} \frac {\sin t} t \rd t$
is the Dirichlet Integral.
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Miscellaneous Special Functions: Sine Integral $\ds \map {Si} x = \int_0^x \frac {\sin u} u \rd u$: $35.13$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 36$: Miscellaneous and Riemann Zeta Functions: Sine Integral $\ds \map \Si x = \int_0^x \frac {\sin u} u \rd u$: $36.13.$