Limit to Infinity of Fresnel Sine Integral Function
Jump to navigation
Jump to search
Theorem
- $\ds \lim_{x \mathop \to \infty} \map {\mathrm S} x = \frac 1 2$
where $\mathrm S$ denotes the Fresnel sine integral function.
Proof
\(\ds \lim_{x \mathop \to \infty} \map {\mathrm S} x\) | \(=\) | \(\ds \sqrt {\frac 2 \pi} \lim_{x \mathop \to \infty} \int_0^x \sin u^2 \rd u\) | Multiple Rule for Limits of Real Functions, Definition of Fresnel Sine Integral Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\frac 2 \pi} \int_0^\infty \sin u^2 \rd u\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\frac 2 \pi} \times \frac 1 2 \sqrt {\frac \pi 2}\) | Definite Integral to Infinity of $\map \sin {a x^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2\) |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 35$: Miscellaneous Special Functions: Fresnel Sine Integral $\ds \map {\operatorname S} x = \sqrt {\frac 2 \pi} \int_0^x \sin u^2 \rd u$: $35.20$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 36$: Miscellaneous and Riemann Zeta Functions: Fresnel Sine Integral $\ds \map {\operatorname S} x = \sqrt {\frac 2 \pi} \int_0^x \sin u^2 \rd u$: $36.20.$