Linear First Order ODE/(2 y - x^3) dx = x dy

From ProofWiki
Jump to navigation Jump to search

Theorem

The linear first order ODE:

$(1): \quad \paren {2 y - x^3} \rd x = x \rd y$

has the general solution:

$y = -x^3 + C x^2$


Proof

Rearranging $(1)$:

$(2): \quad \dfrac {\d y} {\d x} - \dfrac 2 x y = - x^2$

$(2)$ is in the form:

$\dfrac {\d y} {\d x} + \map P x y = \map Q x$

where $\map P x = -\dfrac 2 x$.

Thus:

\(\ds \int \map P x \rd x\) \(=\) \(\ds \int -\dfrac 2 x \rd x\)
\(\ds \) \(=\) \(\ds -2 \ln x\)
\(\ds \) \(=\) \(\ds \map \ln {\frac 1 {x^2} }\)
\(\ds \leadsto \ \ \) \(\ds e^{\int P \rd x}\) \(=\) \(\ds \frac 1 {x^2}\)

Thus from Solution by Integrating Factor, $(1)$ can be rewritten as:

$\map {\dfrac \d {\d x} } {\dfrac y {x^2} } = -1$

and the general solution is:

$\dfrac y {x^2} = -x + C$

or:

$y = -x^3 + C x^2$

$\blacksquare$


Sources