Linear Second Order ODE/y'' - 3 y' + 2 y = 0/y(0) = -1, y'(0) = 1

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad y - 3 y' + 2 y = 0$

with initial conditions:

$\map y 0 = -1$
$\map {y'} 0 = 1$

has the particular solution:

$y = -3 e^x + 2 e^{2 x}$


Proof

From Linear Second Order ODE: $y - 3 y' + 2 y = 0$, the general solution of $(1)$ is:

$y = C_1 e^x + C_2 e^{2 x}$

Differentiating with respect to $x$:

$y' = C_1 e^x + 2 C_2 e^{2 x}$


Thus for the initial conditions:

\(\ds \map y 0\) \(=\) \(\ds C_1 e^0 + C_2 e^{2 \times 0}\)
\(\ds \) \(=\) \(\ds -1\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds C_1 + C_2\) \(=\) \(\ds -1\)


and:

\(\ds \map {y'} 1\) \(=\) \(\ds C_1 e^0 + 2 C_2 e^{2 \times 0}\)
\(\ds \) \(=\) \(\ds 1\)
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds C_1 + 2 C_2\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds C_2\) \(=\) \(\ds 2\) $(3) - (2)$
\(\ds \leadsto \ \ \) \(\ds C_1 + 2\) \(=\) \(\ds -1\) substituting for $C_2$ in $(2)$
\(\ds \leadsto \ \ \) \(\ds C_1\) \(=\) \(\ds -3\)

Hence the result.

$\blacksquare$


Sources