Mapping from Group Element to Inner Automorphism is Homomorphism
Jump to navigation
Jump to search
Theorem
Let $G$ be a group.
Let $\kappa: G \to \Aut G$ be the mapping from $G$ to the automorphism group of $G$ defined as:
- $\forall x \in G: \map \kappa x := \kappa_x$
where $\kappa_x$ is the inner automorphism on $x$:
- $\forall g \in G: \map {\kappa_x} g = x g x^{-1}$
Then $\kappa$ is a homomorphism.
Proof
Let $x, y \in G$.
By definition of automorphism group, we have that:
- $\map \kappa x \map \kappa y = \kappa_x \circ \kappa_y$
where $\circ$ denotes composition of mappings.
Then $\forall g \in G$:
\(\ds \map {\kappa_x \circ \kappa_y} g\) | \(=\) | \(\ds \map {\kappa_x} {\map {\kappa_y} g}\) | for all $g \in G$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {\kappa_x} {y g y^{-1} }\) | Definition of $\kappa_y$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x \paren {y g y^{-1} } x^{-1}\) | Definition of $\kappa_x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x y} g \paren {y^{-1} x^{-1} }\) | Group Axiom $\text G 1$: Associativity | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x y} g \paren {x y}^{-1}\) | Inverse of Group Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {\kappa_{x y} } g\) | Definition of $\kappa_{x y}$ |
And so:
- $\forall g \in G: \map {\kappa_{x y} } g = \map {\kappa_x \circ \kappa_y} g$
Thus by definition of $\kappa$:
- $\map \kappa x \map \kappa y = \map \kappa{x y}$
demonstrating that $\kappa$ is a homomorphism.
$\blacksquare$
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): Chapter $7$: Homomorphisms: Exercise $10$
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): Chapter $8$: Homomorphisms, Normal Subgroups and Quotient Groups: Exercise $25$