Mathematician:Hermann Klaus Hugo Weyl

From ProofWiki
(Redirected from Mathematician:H. Weyl)
Jump to navigation Jump to search

Mathematician

German mathematician who worked in the fields of mathematical logic and mathematical physics.


Nationality

German


History

  • Born: 9 Nov 1885 in Elmshorn (near Hamburg), Schleswig-Holstein, Germany
  • Died: 9 Dec 1955 in Zürich, Switzerland


Theorems and Definitions

Definitions of concepts named for Hermann Klaus Hugo Weyl can be found here.


Publications

  • 1910: Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene (Rend. Circ. Mat. Palermo Vol. 30: pp. 377 – 407)
  • 1913: Idee der Riemannflāche
  • 1918: Das Kontinuum (translated 1987 by Stephen Pollard and Thomas Bole as The Continuum: A Critical Examination of the Foundation of Analysis)
  • 1918: Raum, Zeit, Materie (Space Time Matter)
  • 1923: Mathematische Analyse des Raumproblems
  • 1924: Was ist Materie?
  • 1925: Riemann's Geometrische Idee (published 1988)
  • 1927: Philosophie der Mathematik und Naturwissenschaft (2nd ed. 1949) (Philosophy of Mathematics and Natural Science)
  • 1928: Gruppentheorie und Quantenmechanik (The Theory of Groups and Quantum Mechanics)
  • 1929: Elektron und Gravitation I
  • 1933: The Open World
  • 1934: Mind and Nature
  • Jul. 1934: Harmonics on Homogeneous Manifolds (Ann. Math. Ser. 2 Vol. 35, no. 3: pp. 486 – 499)  www.jstor.org/stable/1968746
  • 1934: On generalized Riemann matrices
  • 1935: Emmy Noether (Scripta Math. Vol. 3: pp. 201 – 220)
  • 1935: Elementary Theory of Invariants
  • 1935: The structure and representation of continuous groups (Lectures at Princeton university during 1933-34)
  • 1939: Classical Groups: Their Invariants And Representations
  • 1940: Algebraic Theory of Numbers
  • 1952: Symmetry
  • 1955: The Concept of a Riemann Surface (3rd edition, translated, of Idee der Riemannflāche from 1913)


Notable Quotes

A "finite" country can be watched by a finite number of policemen, however small the radius of action of the single policeman may be!
--Jul. 1934: Harmonics on Homogeneous Manifolds (Ann. Math. Ser. 2 Vol. 35, no. 3: pp. 486 – 499)  www.jstor.org/stable/1968746


[Symmetry is] one idea by which man has tried throughout the ages to comprehend and create order, beauty and perfection.
--Symmetry, 1952


Sources