Median Formula

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be a triangle.

Let $CD$ be the median of $\triangle ABC$ which bisects $AB$.

MedianOfTriangle.png

The length $m_c$ of $CD$ is given by:

${m_c}^2 = \dfrac {a^2 + b^2} 2 - \dfrac {c^2} 4$


Proof 1

\(\ds a^2 \cdot AD + b^2 \cdot DB\) \(=\) \(\ds CD^2 \cdot c + AD \cdot DB \cdot c\) Stewart's Theorem
\(\ds \leadsto \ \ \) \(\ds a^2 \frac c 2 + b^2 \frac c 2\) \(=\) \(\ds {m_c}^2 \cdot c + \paren {\frac c 2}^2 c\) substituting $AD = DB = \dfrac c 2$ and $CD = m_c$
\(\ds \leadsto \ \ \) \(\ds \frac c 2 \paren {a^2 + b^2}\) \(=\) \(\ds m_c^2 \cdot c + \frac {c^2} 4 \cdot c\)
\(\ds \leadsto \ \ \) \(\ds \frac {a^2 + b^2} 2\) \(=\) \(\ds m_c^2 + \frac {c^2} 4\)
\(\ds \leadsto \ \ \) \(\ds {m_c}^2\) \(=\) \(\ds \frac {a^2 + b^2} 2 - \frac {c^2} 4\) after algebra

$\blacksquare$


Proof 2

Let $\triangle ABC$ be embedded in the complex plane.


Length-of-Triangle-Median-Complex.png


Let $\mathbf a = \overrightarrow {AC}$ and $\mathbf b = \overrightarrow {BC}$.

Then:

\(\ds \overrightarrow {AB}\) \(=\) \(\ds \mathbf a - \mathbf b\)
\(\ds \overrightarrow {AD}\) \(=\) \(\ds \dfrac {\overrightarrow {AB} } 2\)
\(\ds \) \(=\) \(\ds \dfrac {\mathbf a - \mathbf b} 2\)


Then:

\(\ds \overrightarrow {AC} + \overrightarrow {CD}\) \(=\) \(\ds \overrightarrow {AD}\)
\(\ds \leadsto \ \ \) \(\ds \overrightarrow {CD}\) \(=\) \(\ds \overrightarrow {AD} - \overrightarrow {AC}\)
\(\ds \) \(=\) \(\ds \frac {\mathbf a - \mathbf b} 2 - \mathbf a\)
\(\ds \) \(=\) \(\ds -\frac {\mathbf a + \mathbf b} 2\)
\(\ds \leadsto \ \ \) \(\ds {m_c}^2\) \(=\) \(\ds \size {\overrightarrow {CD} }^2\)
\(\ds \) \(=\) \(\ds \size {-\frac {\mathbf a + \mathbf b} 2}^2\)
\(\ds \) \(=\) \(\ds \frac 1 4 \paren {\paren {\mathbf a + \mathbf b} \cdot \paren {\mathbf a + \mathbf b} }\) Dot Product of Vector with Itself
\(\ds \) \(=\) \(\ds \frac 1 4 \paren {\mathbf a \cdot \mathbf a + \mathbf b \cdot \mathbf b + 2 \mathbf a \cdot \mathbf b}\) Square of Sum of Vectors
\(\ds \) \(=\) \(\ds \frac 1 4 \paren {\mathbf a \cdot \mathbf a + \mathbf b \cdot \mathbf b - \paren {\mathbf a - \mathbf b} \cdot \paren {\mathbf a - \mathbf b} + \mathbf a \cdot \mathbf a + \mathbf b \cdot \mathbf b}\) Square of Sum of Vectors
\(\ds \) \(=\) \(\ds \frac 1 4 \paren {2 \size {\mathbf a}^2 + 2 \size {\mathbf b}^2 - \size {\mathbf a - \mathbf b}^2}\) Dot Product of Vector with Itself
\(\ds \) \(=\) \(\ds \frac 1 4 \paren {2 a^2 + 2 b^2 - c^2}\)
\(\ds \) \(=\) \(\ds \frac {a^2 + b^2} 2 - \frac {c^2} 4\)

$\blacksquare$


Proof 3

\(\ds {m_c}^2\) \(=\) \(\ds b^2 + \paren {\frac c 2}^2 - 2 b \paren {\frac c 2} \cos A\) Law of Cosines
\(\ds \) \(=\) \(\ds b^2 + \frac {c^2} 4 - 2 b \paren {\frac c 2} \paren {\frac {b^2 + c^2 - a^2} {2 b c} }\) Law of Cosines
\(\ds \) \(=\) \(\ds b^2 + \frac {c^2} 4 - \frac {b^2 + c^2 - a^2} 2\)
\(\ds \) \(=\) \(\ds \frac {a^2} 2 + \frac {b^2} 2 - \frac {c^2} 4\)

$\blacksquare$


Examples

Triangle $\tuple {1, -2}, \tuple {-3, 4}, \tuple {2, 2}$

Consider the triangle $\triangle ABC$ whose vertices are:

$A = \tuple {1, -2}, B = \tuple {-3, 4}, C = \tuple {2, 2}$

The length of the median of $\triangle ABC$ which which bisects $AB$ is $\sqrt {10}$.


Sources