Metric Space is Weakly Locally Compact iff Strongly Locally Compact

From ProofWiki
Jump to navigation Jump to search


Let $M = \struct {A, d}$ be a metric space.

Then $M$ is weakly locally compact if and only if $M$ is strongly locally compact.


We have from Strongly Locally Compact Space is Weakly Locally Compact that strong local compactness implies weak local compactness in all topological spaces, regardless of whether they are metric spaces or not.

So all we need to do is demonstrate that if $M$ is weakly locally compact then it is strongly locally compact.

We have that a metric space is a $T_2$ (Hausdorff) space.

The result follows from Weakly Locally Compact Hausdorff Space is Strongly Locally Compact.


Also see