Midpoint-Convex Function is Rational Convex

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $I$ be a non-empty real interval.

Let $f: I \to \R$ be a real function.


If $f$ is midpoint-convex, then $f$ is rational-convex.


Proof

It suffices to show that for each $n \in \N$ and for any choice of $n$ elements $x_1, \dots, x_n \in I$:

\(\ds \map f {\frac {x_1 + \dots + x_n} n}\) \(\leq\) \(\ds \frac {\map f {x_1} + \dots + \map f {x_n} } n\)

via Forward-Backward Induction.


Basis for the Induction

The statement holds:

for $n = 0$ vacuously
for $n = 1$ as $\map f {\dfrac x 1} = \dfrac {\map f x} 1$ for each $x \in I$.


Let $x_1, x_2$ be two points in $I$.

Then as $f$ is midpoint-convex:

\(\ds \map f {\frac {x_1 + x_2} {2^1} }\) \(\le\) \(\ds \frac {\map f {x_1} + \map f {x_2} } {2^1}\)

This is the basis for the induction.


Induction Hypothesis

Suppose that if $n = 2^k$, then for any choice $x_1, \dots, x_n$ of $n$ elements in $I$, we have:

\(\ds \map f {\frac {x_1 + \dots + x_n} {2^k} }\) \(\le\) \(\ds \frac {\map f {x_1} + \dots + \map f {x_n} } {2^k}\)

This is the induction hypothesis.


Induction Step

This is the induction step:

Let $n = 2^{k + 1}$.

Let $x_1, \dots, x_n \in I$.

Then:

\(\ds \map f {\frac {x_1 + \dots + x_{2^{k + 1} } } {2^{k + 1} } }\) \(=\) \(\ds \map f {\frac {\frac {x_1 + \dots + x_{2^k} } {2^k} + \frac {x_{2^k + 1} + \dots + x_{2^{k + 1} } } {2^k} } 2}\)
\(\ds \) \(\le\) \(\ds \frac {\map f {\frac {x_1 + \dots + x_{2^k} } {2^k} } + \map f {\frac {x_{2^k + 1} + \dots + x_{2^{k + 1} } } {2^k} } } 2\) as $f$ is midpoint-convex
\(\ds \) \(\le\) \(\ds \frac {\frac {\map f {x_1} + \dots + \map f {x_{2^k} } } {2^k} + \frac {\map f {x_{2^k + 1} } + \dots + \map f {x_{2^{k + 1} } } } {2^k} } 2\) Induction Hypothesis
\(\ds \) \(=\) \(\ds \frac {\map f {x_1} + \dots + \map f {x_{2^{k + 1} } } } {2^{k + 1} }\)

which completes the Proof by Mathematical Induction for integers of the form $2^k$.


Backward Step

Let $2^k \le n \le 2^{k + 1}$ for some integer $k$.

Let $x_1, \dots, x_n \in I$.

Defined $\overline x := \dfrac {x_1 + \dots + x_n} n$.

Then:

\(\ds \map f {\overline x}\) \(=\) \(\ds \map f {\frac {x_1 + \dots + x_n} n}\)
\(\ds \) \(=\) \(\ds \map f {\frac {n \overline x + \paren {2^k - n} \overline x} {2^k} }\)
\(\ds \) \(=\) \(\ds \map f {\frac {x_1 + \dots + x_n + \paren {2^k - n} \overline x} {2^k} }\)
\(\ds \) \(\le\) \(\ds \frac {\map f {x_1} + \dots + \map f {x_n} + \paren {2^k - n} \map f {\overline x} } {2^k}\) from above

from which we obtain:

\(\ds \map f {\overline x}\) \(=\) \(\ds \map f {\frac {x_1 + \dots + x_n} n}\)
\(\ds \) \(\le\) \(\ds \frac {\map f {x_1} + \dots + \map f {x_n} } n\)

completing the proof.

$\blacksquare$