Mills' Theorem/Lemma 3
Jump to navigation
Jump to search
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Lemma for Mills' Theorem
Let:
- $\N$ denote the set of all natural numbers
- $\Bbb P$ denote the set of all prime numbers.
Let $p_n$ be the $n$th prime number.
From Difference between Consecutive Primes:
- $p_{n + 1} - p_n < K {p_n}^{5 / 8}$
where $K$ is an unknown but fixed positive integer.
Let $P_0 > K^8$ be a prime number.
By Lemma 1, there exists an infinite sequence of primes:
- $P_0, P_1, P_2, \ldots$
such that:
- $\forall n \in \N_{>0}: {P_n}^3 < P_{n + 1} < \paren {P_n + 1}^3 - 1$
Let us define the mapping $v: \N \to \Bbb P$ as:
- $\forall n \in \N: \map v n = \paren {P_n + 1}^{3^{-n} }$
Then we have that:
- $\forall n \in \N_{>0}: \map v {n + 1} < \map v n$
Proof
\(\ds \map v {n + 1}\) | \(=\) | \(\ds \paren {P_{n + 1} + 1}^{3^{-\paren {n + 1} } }\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds \paren {\paren {\paren {P_n + 1}^3 - 1} + 1}^{3^{-n - 1} }\) | because $P_{n + 1} < \paren {P_n + 1}^3 - 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {P_n + 1}^3}^{3^{-n - 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {P_n + 1}^ {3^{-n} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map v n\) |
$\blacksquare$