# Models for Propositional Logic

 It has been suggested that this article or section be renamed. One may discuss this suggestion on the talk page.

## Theorem

This page gathers together some useful results that can be used in the derivation of proofs by propositional tableau.

Let $\mathcal M$ be a model for propositional logic, and let $\mathbf A$ and $\mathbf B$ be WFFs of propositional logic.

Then the following results hold.

The symbol $\models$ is used throughout to denote semantic consequence.

### Double Negation

$\mathcal M \models \neg \neg \mathbf A$ iff $\mathcal M \models \mathbf A$

This is the rule of Double Negation.

### And

$\mathcal M \models \left({\mathbf A \land \mathbf B}\right)$ iff both $\mathcal M \models \mathbf A$ and $\mathcal M \models \mathbf B$

This follows by definition of Conjunction.

### Not And

$\mathcal M \models \neg \left({\mathbf A \land \mathbf B}\right)$ iff either $\mathcal M \models \neg \mathbf A$ or $\mathcal M \models \neg \mathbf B$

This follows from De Morgan's Laws: Disjunction of Negations.

### Or

$\mathcal M \models \left({\mathbf A \lor \mathbf B}\right)$ iff either $\mathcal M \models \mathbf A$ or $\mathcal M \models \mathbf B$

This follows by definition of Disjunction.

### Not Or

$\mathcal M \models \neg \left({\mathbf A \lor \mathbf B}\right)$ iff $\mathcal M \models \neg \mathbf A$ and $\mathcal M \models \neg \mathbf B$

This follows from De Morgan's Laws: Conjunction of Negations.

### Implies

$\mathcal M \models \left({\mathbf A \implies \mathbf B}\right)$ iff either $\mathcal M \models \neg \mathbf A$ or $\mathcal M \models \mathbf B$

This follows from Disjunction and Implication.

### Not Implies

$\mathcal M \models \neg \left({\mathbf A \implies \mathbf B}\right)$ iff $\mathcal M \models \mathbf A$ and $\mathcal M \models \neg \mathbf B$

This follows from Conjunction and Implication.

### Iff

$\mathcal M \models \left({\mathbf A \iff \mathbf B}\right)$ iff either:
both $\mathcal M \models \mathbf A$ and $\mathcal M \models \mathbf B$

or:

both $\mathcal M \models \neg \mathbf A$ and $\mathcal M \models \neg \mathbf B$

This follows by definition of biconditional.

### Exclusive Or

$\mathcal M \models \mathbf A \oplus \mathbf B$ iff either:
both $\mathcal M \models \mathbf A$ and $\mathcal M \models \neg \mathbf B$

or:

both $\mathcal M \models \neg \mathbf A$ and $\mathcal M \models \mathbf B$

This follows by definition of exclusive or.