Moment Generating Function of Beta Distribution
Jump to navigation
Jump to search
Theorem
Let $X \sim \BetaDist \alpha \beta$ denote the Beta distribution fior some $\alpha, \beta > 0$.
Then the moment generating function $M_X$ of $X$ is given by:
- $\ds \map {M_X} t = 1 + \sum_{k \mathop = 1}^\infty \paren {\prod_{r \mathop = 0}^{k - 1} \frac {\alpha + r} {\alpha + \beta + r} } \frac {t^k} {k!}$
Proof
From the definition of the Beta distribution, $X$ has probability density function:
- $\map {f_X} x = \dfrac {x^{\alpha - 1} \paren {1 - x}^{\beta - 1} } {\map \Beta {\alpha, \beta} }$
From the definition of a moment generating function:
- $\ds \map {M_X} t = \expect {e^{t X} } = \int_0^1 e^{t x} \map {f_X} x \rd x$
So:
\(\ds \map {M_X} t\) | \(=\) | \(\ds \frac 1 {\map \Beta {\alpha, \beta} } \int_0^1 e^{t x} x^{\alpha - 1} \paren {1 - x}^{\beta - 1} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\map \Beta {\alpha, \beta} } \int_0^1 \paren {\sum_{k \mathop = 0}^\infty \frac {\paren {t x}^k} {k!} } x^{\alpha - 1} \paren {1 - x}^{\beta - 1} \rd x\) | Power Series Expansion for Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\map \Beta {\alpha, \beta} } \sum_{k \mathop = 0}^\infty \frac {t^k} {k!} \int_0^1 x^{\alpha + k - 1} \paren {1 - x}^{\beta - 1} \rd x\) | Power Series is Termwise Integrable within Radius of Convergence | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \frac{t^k} {k!} \paren {\frac {\map \Beta {\alpha + k, \beta} } {\map \Beta {\alpha, \beta} } }\) | Definition of Beta Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \Beta {\alpha, \beta} } {\map \Beta {\alpha, \beta} } \frac {t^0} {0!} + \sum_{k \mathop = 1}^\infty \frac{t^k} {k!} \paren {\frac {\map \Beta {\alpha + k, \beta} } {\map \Beta {\alpha, \beta} } }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \sum_{k \mathop = 1}^\infty \paren {\frac {\map \Gamma {\alpha + k} \map \Gamma \beta} {\map \Gamma {\alpha + \beta + k} } \cdot \frac {\map \Gamma {\alpha + \beta} } {\map \Gamma \alpha \map \Gamma \beta} } \frac{t^k} {k!}\) | Definition 3 of Beta Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \sum_{k \mathop = 1}^\infty \paren {\frac {\map \Gamma {\alpha + k} } {\map \Gamma \alpha} \cdot \frac {\map \Gamma {\alpha + \beta} } {\map \Gamma {\alpha + \beta + k} } } \frac{t^k} {k!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \sum_{k \mathop = 1}^\infty \paren {\frac {\map \Gamma \alpha \prod_{r \mathop = 0}^k \paren {\alpha + r} } {\map \Gamma \alpha} \cdot \frac {\map \Gamma {\alpha + \beta} } {\map \Gamma {\alpha + \beta} \prod_{r \mathop = 0}^k \paren {\alpha + \beta + r} } } \frac{t^k} {k!}\) | Gamma Difference Equation | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \sum_{k \mathop = 1}^\infty \paren {\prod_{r \mathop = 0}^{k - 1} \frac {\alpha + r} {\alpha + \beta + r} } \frac{t^k} {k!}\) | Product of Products |
$\blacksquare$