Moment Generating Function of Logistic Distribution
Theorem
Let $X$ be a continuous random variable which satisfies the logistic distribution:
- $X \sim \map {\operatorname {Logistic} } {\mu, s}$
for some $\mu \in \R, s \in \R_{> 0}$.
Then the moment generating function $M_X$ of $X$ is given by:
- $\map {M_X} t = \begin {cases} \map \exp {\mu t} \map \Beta {\paren {1 - s t}, \paren {1 + s t} } & \size t < \dfrac 1 s \\ \text {does not exist} & \size t \ge \dfrac 1 s \end {cases}$
where $\Beta$ denotes the beta function
Proof
From the definition of the logistic distribution, $X$ has probability density function:
- $\map {f_X} x = \dfrac {\map \exp {-\dfrac {\paren {x - \mu} } s} } {s \paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^2}$
From the definition of a moment generating function:
- $\ds \map {M_X} t = \expect { e^{t X} } = \int_{-\infty}^\infty e^{t x} \map {f_X} x \rd x$
So:
- $\ds \map {M_X} t = \frac 1 s \int_{-\infty}^\infty \dfrac {\map \exp {t x} \map \exp {-\dfrac {\paren {x - \mu} } s} } {\paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^2} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^{-1}\) | Integration by Substitution | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds -\paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^{-2} \paren {-\frac 1 s \map \exp {-\dfrac {\paren {x - \mu} } s} }\) | Power Rule for Derivatives, Chain Rule for Derivatives and Derivative of Exponential Function: Corollary 1 | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac 1 u - 1\) | \(=\) | \(\ds \paren {\map \exp {-\dfrac {\paren {x - \mu} } s} }\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \exp {-\dfrac \mu s} \paren {\dfrac 1 u - 1}\) | \(=\) | \(\ds \map \exp {-\dfrac \mu s} \paren {\map \exp {-\dfrac {\paren {x - \mu} } s} }\) | multiplying both sides by $\map \exp {-\dfrac \mu s}$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \exp {-\dfrac \mu s} \paren {\dfrac 1 u - 1}\) | \(=\) | \(\ds \paren {\map \exp {-\dfrac x s} }\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\map \exp {-\dfrac \mu s} \paren {\dfrac 1 u - 1} }^{-s t}\) | \(=\) | \(\ds \paren {\map \exp {-\dfrac x s} }^{-s t}\) | raising both sides to the $-s t$ power | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \exp {\mu t} \paren {\dfrac {1 - u} u}^{-s t}\) | \(=\) | \(\ds \map \exp {x t}\) |
and also:
\(\ds \lim_{x \mathop \to -\infty} \paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^{-1}\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \lim_{x \mathop \to \infty} \paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^{-1}\) | \(=\) | \(\ds 1\) |
Then:
\(\ds \map {M_X} t\) | \(=\) | \(\ds \map \exp {\mu t} \int_{\to 0}^{\to 1} \paren {\dfrac {1 - u} u}^{-s t} \rd u\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \exp {\mu t} \int_{\to 0}^{\to 1} \paren {1 - u }^{-s t} u^{s t} \rd u\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \exp {\mu t} \map \Beta {\paren {1 - s t}, \paren {1 + s t} }\) | Definition of Beta Function and Commutativity of Parameters of Beta Function |
Note that by definition of the beta function, $\Beta: \C \times \C \to \C$ is defined only for $\map \Re x, \map \Re y > 0$:
Therefore:
- $1 - s t > 0 \leadsto t < \dfrac 1 s$
and:
- $1 + s t > 0 \leadsto t > -\dfrac 1 s$
Therefore, the moment generating function is defined only when $\size t < \dfrac 1 s$.
$\blacksquare$
Examples
First Moment
The first moment generating function of $X$ is given by:
- $\ds \map { {M_X}'} t = \map \exp {\mu t} \paren {\mu \int_{\to 0}^{\to 1} \paren {\dfrac {1 - u} u}^{-s t} \rd u - s \int_{\to 0}^{\to 1} \map \ln {\dfrac {1 - u} u} \paren {\dfrac {1 - u} u}^{-s t} \rd u}$
Second Moment
The second moment generating function of $X$ is given by:
- $\ds \map { {M_X}' '} t = \map \exp {\mu t} \paren {\mu^2 \int_{\to 0}^{\to 1} \paren {\dfrac {1 - u} u}^{-s t} \rd u - 2 s \mu \int_{\to 0}^{\to 1} \map \ln {\dfrac {1 - u} u} \paren {\dfrac {1 - u} u}^{-s t} \rd u + s^2 \int_{\to 0}^{\to 1} \map {\ln^2} {\dfrac {1 - u} u} \paren {\dfrac {1 - u} u}^{-s t} \rd u}$
Third Moment
Moment Generating Function of Logistic Distribution/Examples/Third Moment
Fourth Moment
Moment Generating Function of Logistic Distribution/Examples/Fourth Moment