Moment Generating Function of Logistic Distribution/Examples/Second Moment

Examples of Use of Moment Generating Function of Logistic Distribution

Let $X$ be a continuous random variable which satisfies the logistic distribution:

$X \sim \map {\operatorname {Logistic} } {\mu, s}$

for some $\mu \in \R, s \in \R_{> 0}$.

Let $\size t < \dfrac 1 s$.

The second moment generating function of $X$ is given by:

$\ds \map { {M_X}''} t = \map \exp {\mu t} \paren {\mu^2 \int_{\to 0}^{\to 1} \paren {\dfrac {1 - u} u}^{-s t} \rd u - 2 s \mu \int_{\to 0}^{\to 1} \map \ln {\dfrac {1 - u} u} \paren {\dfrac {1 - u} u}^{-s t} \rd u + s^2 \int_{\to 0}^{\to 1} \map {\ln^2} {\dfrac {1 - u} u} \paren {\dfrac {1 - u} u}^{-s t} \rd u}$

Proof

We have:

 $\ds \map { {M_X}''} t$ $=$ $\ds \map {\frac \d {\d t} } {\map \exp {\mu t} \paren {\mu \int_{\to 0}^{\to 1} \paren {\dfrac {1 - u} u}^{-s t} \rd u - s \int_{\to 0}^{\to 1} \map \ln {\dfrac {1 - u} u} \paren {\dfrac {1 - u} u}^{-s t} \rd u} }$ Moment Generating Function of Logistic Distribution/Examples/First Moment $\ds$ $=$ $\ds \mu^2 \map \exp {\mu t} \int_{\to 0}^{\to 1} \paren {\dfrac {1 - u} u}^{-s t} \rd u + \mu \map \exp {\mu t} \int_{\to 0}^{\to 1} -s \map \ln {\dfrac {1 - u} u} \paren {\dfrac {1 - u} u}^{-s t} \rd u - s \mu \map \exp {\mu t} \int_{\to 0}^{\to 1} \paren {\dfrac {1 - u} u}^{-s t} \rd u + s^2 \map \exp {\mu t} \int_{\to 0}^{\to 1} \map {\ln^2} {\dfrac {1 - u} u} \paren {\dfrac {1 - u} u}^{-s t} \rd u$ Product Rule, Chain Rule for Derivatives Derivative of Power of Constant and Derivative of Exponential Function $\ds$ $=$ $\ds \map \exp {\mu t} \paren {\mu^2 \int_{\to 0}^{\to 1} \paren {\dfrac {1 - u} u}^{-s t} \rd u - 2 s \mu \int_{\to 0}^{\to 1} \map \ln {\dfrac {1 - u} u} \paren {\dfrac {1 - u} u}^{-s t} \rd u + s^2 \int_{\to 0}^{\to 1} \map {\ln^2} {\dfrac {1 - u} u} \paren {\dfrac {1 - u} u}^{-s t} \rd u}$

$\blacksquare$