Monotone Convergence Theorem (Measure Theory)

From ProofWiki
Jump to navigation Jump to search

This proof is about Monotone Convergence Theorem in the context of Measure Theory. For other uses, see Monotone Convergence Theorem.

Theorem

Let $\struct {X, \Sigma, \mu}$ be a measure space.

Let $\sequence {u_n}_{n \mathop \in \N} \in \map {\LL^1} \mu$, $u_n: X \to \R$ be a increasing sequence of $\mu$-integrable functions.

Let $\displaystyle \sup_{n \mathop \in \N} u_n: X \to \overline \R$ be the pointwise supremum of the $u_n$.


Then $\displaystyle \sup_{n \mathop \in \N} u_n$ is $\mu$-integrable if and only if:

$\displaystyle \sup_{n \mathop \in \N} \int u_n \rd \mu < +\infty$

and, in that case:

$\displaystyle \int \sup_{n \mathop \in \N} u_n \rd \mu = \sup_{n \mathop \in \N} \int u_n \rd \mu$


Corollary

Let $\sequence {u_n}_{n \mathop \in \N} \in \map {\LL^1} \mu$, $u_n: X \to \R$ be a decreasing sequence of $\mu$-integrable functions.

Let $\displaystyle \inf_{n \mathop \in \N} u_n: X \to \overline \R$ be the pointwise infimum of the $u_n$.


Then $\displaystyle \inf_{n \mathop \in \N} u_n$ is $\mu$-integrable if and only if:

$\displaystyle \inf_{n \mathop \in \N} \int u_n \rd \mu > -\infty$

and, in that case:

$\displaystyle \int \inf_{n \mathop \in \N} u_n \rd \mu = \inf_{n \mathop \in \N} \int u_n \rd \mu$


Proof


Sources