Lower and Upper Bounds for Sequences
Theorem
Let $\sequence {x_n}$ be a sequence in $\R$.
Let $x_n \to l$ as $n \to \infty$.
Then:
- $(1): \quad \forall n \in \N: x_n \ge a \implies l \ge a$
- $(2): \quad \forall n \in \N: x_n \le b \implies l \le b$
Corollary
Let $\sequence {x_n}$ and $\sequence {y_n}$ be sequences in $\R$.
Let $\sequence {x_n}$ and $\sequence {y_n}$ be convergent to the following limits:
\(\ds \lim_{n \mathop \to \infty} x_n\) | \(=\) | \(\ds l\) | ||||||||||||
\(\ds \lim_{n \mathop \to \infty} y_n\) | \(=\) | \(\ds m\) |
Let there exist $N \in \N$ such that:
- $\forall n \ge N: x_n \le y_n$
Then:
- $l \le m$
Proof
$(1): \quad \forall n \in \N: x_n \ge a \implies l \ge a$:
Let $\epsilon > 0$.
Then:
- $\exists N \in \N: n > N \implies \size {x_n - l} < \epsilon$
So from Negative of Absolute Value:
- $l - \epsilon < x_n < l + \epsilon$
But $x_n \ge a$, so:
- $a \le x_n < l + \epsilon$
Thus, for any $\epsilon > 0$:
- $a < l + \epsilon$
From Real Plus Epsilon it follows that $a \le l$.
$\Box$
$(2): \quad \forall n \in \N: x_n \le b \implies l \le b$:
If $x_n \le b$ it follows that $-x_n \ge -b$ and the above result can be used.
$\blacksquare$
Warning
Let $\sequence {x_n}$ be a sequence in $\R$.
Let $x_n \to l$ as $n \to \infty$.
Then it is not necessarily the case that:
- $(1): \quad \forall n \in \N: x_n > a \implies l > a$
- $(2): \quad \forall n \in \N: x_n < b \implies l < b$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 4$: Convergent Sequences: Some simple properties of convergent sequences: $\S 4.23$