Multiplication of Fractions

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b, c, d \in \Z$ such that $b d \ne 0$.

Then:

$\dfrac a b \times \dfrac c d = \dfrac {a c} {b d}$


Proof

\(\ds \dfrac a b \times \dfrac c d\) \(=\) \(\ds a \times \dfrac 1 b \times c \times \dfrac 1 d\)
\(\ds \) \(=\) \(\ds a \times c \times \dfrac 1 b \times \dfrac 1 d\)
\(\ds \) \(=\) \(\ds a c \times \dfrac 1 {b d}\)
\(\ds \) \(=\) \(\ds \dfrac {a c} {b d}\)

$\blacksquare$


Examples

Example: $\frac 2 3 \times \frac 4 7$

$\dfrac 2 3 \times \dfrac 4 7 = \dfrac 8 {21}$


Sources