Multiplication of Fractions
Jump to navigation
Jump to search
Theorem
Let $a, b, c, d \in \Z$ such that $b d \ne 0$.
Then:
- $\dfrac a b \times \dfrac c d = \dfrac {a c} {b d}$
Proof
\(\ds \dfrac a b \times \dfrac c d\) | \(=\) | \(\ds a \times \dfrac 1 b \times c \times \dfrac 1 d\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a \times c \times \dfrac 1 b \times \dfrac 1 d\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a c \times \dfrac 1 {b d}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {a c} {b d}\) |
$\blacksquare$
Examples
Example: $\frac 2 3 \times \frac 4 7$
- $\dfrac 2 3 \times \dfrac 4 7 = \dfrac 8 {21}$
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): fraction
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): fraction