Newton-Girard Identities/Examples
Jump to navigation
Jump to search
Examples of Newton-Girard Identities
Order $1$
- $\ds \sum_{a \mathop \le i \mathop \le b} x_i = S_1$
where:
- $\ds S_r := \sum_{k \mathop = a}^b {x_k}^r$
Order $2$
- $\ds \sum_{a \mathop \le i \mathop < j \mathop \le b} x_i x_j = \dfrac 1 2 \paren {\paren {\sum_{i \mathop = a}^b x_i}^2 - \paren {\sum_{i \mathop = a}^b {x_i}^2} }$
Order $3$
- $\ds \sum_{a \mathop \le i \mathop < j \mathop < k \mathop \le b} x_i x_j x_k = \dfrac { {S_1}^3} 6 - \dfrac {S_1 S_2} 2 + \dfrac {S_3} 3$
where:
- $\ds S_r := \sum_{k \mathop = a}^b {x_k}^r$
Order $4$
- $\ds \sum_{a \mathop \le j_1 \mathop < j_2 \mathop < j_3 \mathop < j_4 \mathop \le b} x_{j_1} x_{j_2} x_{j_3} x_{j_4} = \dfrac { {S_1}^4} {24} - \dfrac { {S_1}^2 S_2} 4 + \dfrac { {S_2}^2} 8 + \dfrac {S_1 S_3} 3 - \dfrac {S_4} 4$
where:
- $\ds S_r := \sum_{k \mathop = a}^b {x_k}^r$.