Newton-Girard Identities/Examples/Order 4
Jump to navigation
Jump to search
Theorem
Let $a, b \in \Z$ be integers such that $b \ge a$.
Let $U$ be a set of $n = b - a + 1$ numbers $\set {x_a, x_{a + 1}, \ldots, x_b}$.
Then:
- $\ds \sum_{a \mathop \le j_1 \mathop < j_2 \mathop < j_3 \mathop < j_4 \mathop \le b} x_{j_1} x_{j_2} x_{j_3} x_{j_4} = \dfrac { {S_1}^4} {24} - \dfrac { {S_1}^2 S_2} 4 + \dfrac { {S_2}^2} 8 + \dfrac {S_1 S_3} 3 - \dfrac {S_4} 4$
where:
- $\ds S_r := \sum_{k \mathop = a}^b {x_k}^r$.
Proof
From Newton-Girard Identities:
- $\ds \sum_{a \mathop \le j_1 \mathop < \mathop \cdots \mathop < j_m \mathop \le b} x_{j_1} \cdots x_{j_m} = \sum_{\substack {k_1, k_2, \ldots, k_m \mathop \ge 0 \\ k_1 \mathop + 2 k_2 \mathop + \mathop \cdots \mathop + m k_m \mathop = m} } \dfrac { {S_1}^{k_1} } {1^{k_1} k_1 !} \dfrac {\paren {-S_2}^{k_2} } {2^{k_2} k_2 !} \dfrac { {S_3}^{k_3} } {3^{k_3} k_3 !} \cdots \dfrac {\paren {\paren {-1}^{m + 1} S_m}^{k_m} } {m^{k_m} k_m !}$
where:
- $S_j = \ds \sum_{k \mathop = a}^b {x_k}^j$ for $j \in \Z_{\ge 0}$.
Setting $m = 4$:
\(\ds \sum_{a \mathop \le j_1 \mathop < j_2 \mathop < j_3 \mathop < j_4 \mathop \le b} x_{j_1} x_{j_2} x_{j_3} x_{j_4}\) | \(=\) | \(\ds \sum_{\substack {k_1, k_2, k_3, k_4 \mathop \ge 0 \\ k_1 \mathop + 2 k_2 \mathop + 3 k_3 \mathop + 4 k_4 \mathop = 4} } \dfrac { {S_1}^{k_1} } {1^{k_1} k_1 !} \dfrac {\paren {-S_2}^{k_2} } {2^{k_2} k_2 !} \dfrac { {S_3}^{k_3} } {3^{k_3} k_3 !} \dfrac {\paren {-S_4}^{k_4} } {4^{k_4} k_4 !}\) |
We need to find all ordered quadruples of $k_1, k_2, k_3, k_4 \in \Z_{\ge 0}$ such that:
- $k_1 + 2 k_2 + 3 k_3 + 4 k_4 = 4$
Thus $\tuple {k_1, k_2, k_3, k_4}$ can be:
- $\tuple {4, 0, 0, 0}$
- $\tuple {2, 1, 0, 0}$
- $\tuple {0, 2, 0, 0}$
- $\tuple {1, 0, 1, 0}$
- $\tuple {0, 0, 0, 1}$
Hence:
\(\ds \sum_{a \mathop \le j_1 \mathop \le j_2 \mathop \le j_3 \mathop \le b} x_{j_1} x_{j_2} x_{j_3}\) | \(=\) | \(\ds \dfrac { {S_1}^4 \paren {-S_2}^0 {S_3}^0 \paren {-S_4}^0} {\paren {1^4 \times 4!} \paren {2^0 \times 0!} \paren {3^0 \times 0!} \paren {4^0 \times 0!} }\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac { {S_1}^2 \paren {-S_2}^1 {S_3}^0 \paren {-S_4}^0} {\paren {1^2 \times 2!} \paren {2^1 \times 1!} \paren {3^0 \times 0!} \paren {4^0 \times 0!} }\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac { {S_1}^0 \paren {-S_2}^2 {S_3}^0 \paren {-S_4}^0} {\paren {1^0 \times 0!} \paren {2^2 \times 2!} \paren {3^0 \times 0!} \paren {4^0 \times 0!} }\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac { {S_1}^1 \paren {-S_2}^0 {S_3}^1 \paren {-S_4}^0} {\paren {1^1 \times 1!}\ \paren {2^0 \times 0!} \paren {3^1 \times 1!} \paren {4^0 \times 0!} }\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac { {S_1}^0 \paren {-S_2}^0 {S_3}^0 \paren {-S_4}^1} {\paren {1^0 \times 0!} \paren {2^0 \times 0!} \paren {3^0 \times 0!} \paren {4^1 \times 1!} }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac { {S_1}^4} {24} - \dfrac { {S_1}^2 S_2} 4 + \dfrac { {S_2}^2} 8 + \dfrac {S_1 S_3} 3 - \dfrac {S_4} 4\) |
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.9$: Generating Functions: Exercise $10$