Non-Abelian Order 8 Group with One Order 2 Element is Quaternion Group/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Lemma

$\set {\pm 1}$ is a normal subgroup of $G$.


Proof

\(\ds \forall g \in G: \, \) \(\ds g \circ 1 \circ g^{-1}\) \(=\) \(\ds g \circ g^{-1}\) Definition of Identity Element
\(\ds \) \(=\) \(\ds 1\) Definition of Inverse Element


\(\ds \forall g \in G: \, \) \(\ds \paren {g \circ \paren {-1} \circ g^{-1} }^2\) \(=\) \(\ds g \circ \paren {-1} \circ g^{-1} \circ g \circ \paren {-1} \circ g^{-1}\)
\(\ds \) \(=\) \(\ds g \circ \paren {-1} \circ \paren {-1} \circ g^{-1}\) Definition of Inverse Element
\(\ds \) \(=\) \(\ds g \circ g^{-1}\) Order of $-1$ is $2$
\(\ds \) \(=\) \(\ds 1\) Definition of Inverse Element

So:

$g \circ \paren {-1} \circ g^{-1} = 1$

or:

$g \circ \paren {-1} \circ g^{-1} = -1$


Suppose $g \circ \paren {-1} \circ g^{-1} = 1$.

Then:

\(\ds g \circ \paren {-1} \circ g^{-1}\) \(=\) \(\ds 1\)
\(\ds g^{-1} \circ g \circ \paren {-1} \circ g^{-1} \circ g\) \(=\) \(\ds g^{-1} \circ 1 \circ g\) applying same action on both sides
\(\ds -1\) \(=\) \(\ds 1\) Definition of Inverse Element, Definition of Identity Element

which is a contradiction.

So it is the other case:

$g \circ \paren {-1} \circ g^{-1} = -1$

Therefore:

$\forall g \in G: g \circ \set {\pm 1} \circ g^{-1} = \set {\pm 1}$

By definition, $\set {\pm 1}$ is a normal subgroup.

$\blacksquare$