Nth Derivative of General Harmonic Number Order One

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z_{>0}$.

The $n$th derivative of $\harm 1 x$ with respect to $x$ is:

$\dfrac {\d^n} {\d x^n} \harm 1 x = \paren {-1}^{n + 1} n! \paren {\map \zeta {n + 1} - \harm {n + 1} x}$


where:

$\harm n x$ denotes the general harmonic number of order $n$ evaluated at $x$
$\map \zeta n$ is the Riemann zeta function
$x \in \C$ with $x \notin \Z_{<0}$


Proof

\(\ds \dfrac {\d^n} {\d x^n} \harm 1 x\) \(=\) \(\ds \dfrac {\d^n} {\d x^n} \paren {\sum_{k \mathop = 1}^\infty \paren {\frac 1 {k^1} - \frac 1 {\paren {k + x}^1} } }\) Definition of General Harmonic Numbers
\(\ds \) \(=\) \(\ds \dfrac {\d^n} {\d x^n} \paren {\sum_{k \mathop = 1}^\infty \frac 1 {k^1} } - \dfrac {\d^n} {\d x^n} \paren {\sum_{k \mathop = 1}^\infty \frac 1 {\paren {k + x}^1} }\) Linear Combination of Convergent Series
\(\ds \) \(=\) \(\ds \paren {-1}^{n + 1} n! \paren {\sum_{k \mathop = 1}^\infty \frac 1 {\paren {k + x}^{n + 1} } }\) Nth Derivative of Reciprocal of Mth Power: Corollary
\(\ds \) \(=\) \(\ds \paren {-1}^{n + 1} n! \paren {\paren {\sum_{k \mathop = 1}^\infty \frac 1 {k^{n + 1} } - \sum_{k \mathop = 1}^\infty \frac 1 {k^{n + 1} } } + \sum_{k \mathop = 1}^\infty \frac 1 {\paren {k + x}^{n + 1} } }\) add $0$
\(\ds \) \(=\) \(\ds \paren {-1}^{n + 1} n! \paren {\sum_{k \mathop = 1}^\infty \frac 1 {k^{n + 1} } - \sum_{k \mathop = 1}^\infty \paren {\frac 1 {k^{n + 1} } - \frac 1 {\paren {k + x}^{n + 1} } } }\)
\(\ds \) \(=\) \(\ds \paren {-1}^{n + 1} n! \paren {\map \zeta {n + 1} - \harm {n + 1} x}\) Definition of Riemann Zeta Function

$\blacksquare$