Linear Combination of Convergent Series

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\sequence {a_n}_{n \mathop \ge 1}$ and $\sequence {b_n}_{n \mathop \ge 1}$ be sequences of real numbers.

Let the two series $\ds\sum_{n \mathop = 1}^\infty a_n$ and $\ds \sum_{n \mathop = 1}^\infty b_n$ converge to $\alpha$ and $\beta$ respectively.

Let $\lambda, \mu \in \R$ be real numbers.


Then the series $\ds \sum_{n \mathop = 1}^\infty \paren {\lambda a_n + \mu b_n}$ converges to $\lambda \alpha + \mu \beta$.


Proof

\(\ds \sum_{n \mathop = 1}^N \paren {\lambda a_n + \mu b_n}\) \(=\) \(\ds \lambda \sum_{n \mathop = 1}^N a_n + \mu \sum_{n \mathop = 1}^N b_n\) Linear Combination of Indexed Summations
\(\ds \) \(\to\) \(\ds \lambda \alpha + \mu \beta \text{ as } N \to \infty\) Combination Theorem for Sequences

$\blacksquare$


Sources