Numbers for which Sixth Power plus 1091 is Composite

From ProofWiki
Jump to navigation Jump to search

Theorem

The number $1091$ has the property that:

$x^6 + 1091$

is composite for all integer values of $x$ from $1$ to $3905$.


Proof

We check the result and show that it cannot be improved further by showing:

$3906$ is the smallest $x$ such that $x^6 + 1091$ is prime.


Suppose $x^6 + 1091$ is prime.

Then:

$x$ is a multiple of $42$
$x$ ends in $0$, $4$ or $6$ in decimal notation
$x \not \equiv \pm 1, \pm 3, \pm 4 \pmod {13}$
$x \not \equiv \pm 4, \pm 6, \pm 9 \pmod {19}$


The proof is split into $6$ parts:


$x$ is a multiple of $2$

Suppose not. Then $x$ is odd, and so is $x^6$.

Hence $x^6 + 1091$ is even, and thus composite.

Thus we must require $x$ to be even.

$\Box$


$x$ is a multiple of $3$

Suppose not. Write $x = 3 k \pm 1$.

Hence:

\(\ds x^6 + 1091\) \(=\) \(\ds \paren {3 k \pm 1}^6 + 1091\)
\(\ds \) \(\equiv\) \(\ds \paren {\pm 1}^6 - 1\) \(\ds \pmod 3\) Congruence of Powers
\(\ds \) \(\equiv\) \(\ds 0\) \(\ds \pmod 3\)

showing that $x^6 + 1091$ is composite (divisible by $3$).

Thus we must require $x$ to be a multiple of $3$.

$\Box$


$x$ is a multiple of $7$

Suppose not. Then $x \perp 7$.

Then:

\(\ds n^6 + 1091\) \(\equiv\) \(\ds 1 + 1091\) \(\ds \pmod 7\) Fermat's Little Theorem
\(\ds \) \(\equiv\) \(\ds 0\) \(\ds \pmod 7\)

showing that $x^6 + 1091$ is composite (divisible by $7$).

Thus we must require $x$ to be a multiple of $7$.

$\Box$


$x$ ends in $0$, $4$ or $6$

From the above we require $x$ to be even.

Suppose $x$ ends in $2$ or $8$.

Then $x^6$ ends in $4$.

Thus $x^6 + 1091$ ends in $5$, which by Divisibility by 5 is divisible by $5$.

Hence we must require $x$ to end in $0$, $4$ or $6$.

$\Box$


$x \not \equiv \pm 1, \pm 3, \pm 4 \pmod {13}$

Here is a table of $x^6 \pmod {13}$:

$\begin{array}{|c|c|c|c|c|c|c|c|}

\hline x \bmod {13} & 0 & \pm 1 & \pm 2 & \pm 3 & \pm 4 & \pm 5 & \pm 6 \\ \hline x^6 \bmod {13} & 0 & 1 & -1 & 1 & 1 & -1 & -1 \\ \hline \end{array}$


For $x \equiv \pm 1, \pm 3, \pm 4 \pmod {13}$:

\(\ds x^6 + 1091\) \(\equiv\) \(\ds 1 - 1\) \(\ds \pmod {13}\)
\(\ds \) \(\equiv\) \(\ds 0\) \(\ds \pmod {13}\)

showing that $x^6 + 1091$ is composite (divisible by $13$).

Thus we must require $x \not \equiv \pm 1, \pm 3, \pm 4 \pmod {13}$.

$\Box$


$x \not \equiv \pm 4, \pm 6, \pm 9 \pmod {19}$

Here is a table of $x^6 \pmod {19}$:

$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}

\hline x \bmod {19} & 0 & \pm 1 & \pm 2 & \pm 3 & \pm 4 & \pm 5 & \pm 6 & \pm 7 & \pm 8 & \pm 9 \\ \hline x^6 \bmod {19} & 0 & 1 & 7 & 7 & 11 & 6 & 11 & 1 & 1 & 11\\ \hline \end{array}$


For $x \equiv \pm 4, \pm 6, \pm 9 \pmod {19}$:

\(\ds x^6 + 1091\) \(\equiv\) \(\ds 11 + 8\) \(\ds \pmod {19}\)
\(\ds \) \(\equiv\) \(\ds 0\) \(\ds \pmod {19}\)

showing that $x^6 + 1091$ is composite (divisible by $19$).

Thus we must require $x \not \equiv \pm 4, \pm 6, \pm 9 \pmod {19}$.

$\Box$


Below is a list of prime factorizations of $x^6 + 1091$, where $42 \divides x$ and does not end in $2$ or $8$.

If $x$ satisfies one of the above congruences, their remainder is listed instead.

\(\ds 84^6 + 1091\) \(=\) \(\ds 23 \times 15 \, 273 \, 827 \, 509\)
\(\ds 126\) \(\equiv\) \(\ds -4 \pmod {13}\)
\(\ds 210^6 + 1091\) \(=\) \(\ds 109 \times 786 \, 845 \, 146 \, 799\)
\(\ds 294\) \(\equiv\) \(\ds +9 \pmod {19}\)
\(\ds 336\) \(\equiv\) \(\ds -6 \pmod {19}\)
\(\ds 420\) \(\equiv\) \(\ds +4 \pmod {13}\)
\(\ds 504\) \(\equiv\) \(\ds -3 \pmod {13}\)
\(\ds 546^6 + 1091\) \(=\) \(\ds 2129 \times 12 \, 444 \, 578 \, 592 \, 403\)
\(\ds 630^6 + 1091\) \(=\) \(\ds 347 \times 41 \, 957 \times 4 \, 294 \, 468 \, 229\)
\(\ds 714\) \(\equiv\) \(\ds -1 \pmod {13}\)
\(\ds 756\) \(\equiv\) \(\ds -4 \pmod {19}\)
\(\ds 840\) \(\equiv\) \(\ds +4 \pmod {19}\)
\(\ds 924\) \(\equiv\) \(\ds +1 \pmod {13}\)
\(\ds 966\) \(\equiv\) \(\ds +4 \pmod {13}\)
\(\ds 1050\) \(\equiv\) \(\ds -3 \pmod {13}\)
\(\ds 1134\) \(\equiv\) \(\ds +3 \pmod {13}\)
\(\ds 1176^6 + 1091\) \(=\) \(\ds 34 \, 996 \, 691 \times 75 \, 581 \, 750 \, 737\)
\(\ds 1260\) \(\equiv\) \(\ds -1 \pmod {13}\)
\(\ds 1344^6 + 1091\) \(=\) \(\ds 11^2 \times 48 \, 709 \, 115 \, 345 \, 425 \, 307\)
\(\ds 1386^6 + 1091\) \(=\) \(\ds 6 \, 282 \, 607 \times 1 \, 128 \, 338 \, 710 \, 061\)
\(\ds 1470\) \(\equiv\) \(\ds +1 \pmod {13}\)
\(\ds 1544\) \(\equiv\) \(\ds -4 \pmod {19}\)
\(\ds 1596\) \(\equiv\) \(\ds -3 \pmod {13}\)
\(\ds 1680\) \(\equiv\) \(\ds +3 \pmod {13}\)
\(\ds 1764\) \(\equiv\) \(\ds -4 \pmod {13}\)
\(\ds 1806\) \(\equiv\) \(\ds -1 \pmod {13}\)
\(\ds 1890\) \(\equiv\) \(\ds -9 \pmod {19}\)
\(\ds 1974^6 + 1091\) \(=\) \(\ds 68 \, 891 \times 3 \, 944 \, 449 \times 217 \, 737 \, 913\)
\(\ds 2016\) \(\equiv\) \(\ds +1 \pmod {13}\)
\(\ds 2100\) \(\equiv\) \(\ds -9 \pmod {19}\)
\(\ds 2184^6 + 1091\) \(=\) \(\ds 199 \times 66 \, 919 \times 2 \, 135 \, 519 \times 3 \, 816 \, 013\)
\(\ds 2226\) \(\equiv\) \(\ds +3 \pmod {13}\)
\(\ds 2310\) \(\equiv\) \(\ds -4 \pmod {13}\)
\(\ds 2394^6 + 1091\) \(=\) \(\ds 41 \times 193 \times 587 \times 40 \, 528 \, 973 \, 983 \, 937\)
\(\ds 2436\) \(\equiv\) \(\ds +4 \pmod {19}\)
\(\ds 2520^6 + 1091\) \(=\) \(\ds 199 \times 1 \, 286 \, 915 \, 904 \, 764 \, 140 \, 709\)
\(\ds 2604\) \(\equiv\) \(\ds +4 \pmod {13}\)
\(\ds 2646^6 + 1091\) \(=\) \(\ds 383 \times 1 \, 100 \, 441 \times 814 \, 279 \, 501 \, 829\)
\(\ds 2730\) \(\equiv\) \(\ds -6 \pmod {19}\)
\(\ds 2814^6 + 1091\) \(=\) \(\ds 11 \times 23 \times 888 \, 416 \, 027 \times 2 \, 209 \, 060 \, 717\)
\(\ds 2856\) \(\equiv\) \(\ds -4 \pmod {13}\)
\(\ds 2940^6 + 1091\) \(=\) \(\ds 13 \, 163 \times 49 \, 060 \, 175 \, 921 \, 131 \, 657\)
\(\ds 3024^6 + 1091\) \(=\) \(\ds 4153 \times 2 \, 196 \, 011 \times 83 \, 848 \, 303 \, 249\)
\(\ds 3066^6 + 1091\) \(=\) \(\ds 47 \times 6577 \times 18 \, 839 \times 45 \, 869 \times 3 \, 109 \, 783\)
\(\ds 3150\) \(\equiv\) \(\ds +4 \pmod {13}\)
\(\ds 3234\) \(\equiv\) \(\ds -3 \pmod {13}\)
\(\ds 3276^6 + 1091\) \(=\) \(\ds 11 \times 2677 \times 41 \, 978 \, 054 \, 029 \, 285 \, 861\)
\(\ds 3360^6 + 1091\) \(=\) \(\ds 233 \times 9781 \times 300 \, 413 \times 2 \, 101 \, 734 \, 059\)
\(\ds 3444\) \(\equiv\) \(\ds -1 \pmod {13}\)
\(\ds 3486\) \(\equiv\) \(\ds +9 \pmod {19}\)
\(\ds 3570^6 + 1091\) \(=\) \(\ds 19 \, 379 \times 32 \, 911 \, 471 \times 3 \, 245 \, 866 \, 399\)
\(\ds 3654\) \(\equiv\) \(\ds +1 \pmod {13}\)
\(\ds 3696\) \(\equiv\) \(\ds +4 \pmod {13}\)
\(\ds 3780\) \(\equiv\) \(\ds -3 \pmod {13}\)
\(\ds 3864\) \(\equiv\) \(\ds +3 \pmod {13}\)
\(\ds 3906^6 + 1091\) \(=\) \(\ds 3 \, 551 \, 349 \, 655 \, 007 \, 944 \, 406 \, 147 \text { is prime}\)


The above results are obtained using the "Alpertron" Integer factorization calculator.

The whole operation took approximately $1$ second.

$\blacksquare$


Sources