Numbers for which Sixth Power plus 1091 is Composite
Theorem
The number $1091$ has the property that:
- $x^6 + 1091$
is composite for all integer values of $x$ from $1$ to $3905$.
Proof
We check the result and show that it cannot be improved further by showing:
- $3906$ is the smallest $x$ such that $x^6 + 1091$ is prime.
Suppose $x^6 + 1091$ is prime.
Then:
- $x$ is a multiple of $42$
- $x$ ends in $0$, $4$ or $6$ in decimal notation
- $x \not \equiv \pm 1, \pm 3, \pm 4 \pmod {13}$
- $x \not \equiv \pm 4, \pm 6, \pm 9 \pmod {19}$
The proof is split into $6$ parts:
$x$ is a multiple of $2$
Suppose not. Then $x$ is odd, and so is $x^6$.
Hence $x^6 + 1091$ is even, and thus composite.
Thus we must require $x$ to be even.
$\Box$
$x$ is a multiple of $3$
Suppose not. Write $x = 3 k \pm 1$.
Hence:
\(\ds x^6 + 1091\) | \(=\) | \(\ds \paren {3 k \pm 1}^6 + 1091\) | ||||||||||||
\(\ds \) | \(\equiv\) | \(\ds \paren {\pm 1}^6 - 1\) | \(\ds \pmod 3\) | Congruence of Powers | ||||||||||
\(\ds \) | \(\equiv\) | \(\ds 0\) | \(\ds \pmod 3\) |
showing that $x^6 + 1091$ is composite (divisible by $3$).
Thus we must require $x$ to be a multiple of $3$.
$\Box$
$x$ is a multiple of $7$
Suppose not. Then $x \perp 7$.
Then:
\(\ds n^6 + 1091\) | \(\equiv\) | \(\ds 1 + 1091\) | \(\ds \pmod 7\) | Fermat's Little Theorem | ||||||||||
\(\ds \) | \(\equiv\) | \(\ds 0\) | \(\ds \pmod 7\) |
showing that $x^6 + 1091$ is composite (divisible by $7$).
Thus we must require $x$ to be a multiple of $7$.
$\Box$
$x$ ends in $0$, $4$ or $6$
From the above we require $x$ to be even.
Suppose $x$ ends in $2$ or $8$.
Then $x^6$ ends in $4$.
Thus $x^6 + 1091$ ends in $5$, which by Divisibility by 5 is divisible by $5$.
Hence we must require $x$ to end in $0$, $4$ or $6$.
$\Box$
$x \not \equiv \pm 1, \pm 3, \pm 4 \pmod {13}$
Here is a table of $x^6 \pmod {13}$:
- $\begin{array}{|c|c|c|c|c|c|c|c|}
\hline x \bmod {13} & 0 & \pm 1 & \pm 2 & \pm 3 & \pm 4 & \pm 5 & \pm 6 \\ \hline x^6 \bmod {13} & 0 & 1 & -1 & 1 & 1 & -1 & -1 \\ \hline \end{array}$
For $x \equiv \pm 1, \pm 3, \pm 4 \pmod {13}$:
\(\ds x^6 + 1091\) | \(\equiv\) | \(\ds 1 - 1\) | \(\ds \pmod {13}\) | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds 0\) | \(\ds \pmod {13}\) |
showing that $x^6 + 1091$ is composite (divisible by $13$).
Thus we must require $x \not \equiv \pm 1, \pm 3, \pm 4 \pmod {13}$.
$\Box$
$x \not \equiv \pm 4, \pm 6, \pm 9 \pmod {19}$
Here is a table of $x^6 \pmod {19}$:
- $\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline x \bmod {19} & 0 & \pm 1 & \pm 2 & \pm 3 & \pm 4 & \pm 5 & \pm 6 & \pm 7 & \pm 8 & \pm 9 \\ \hline x^6 \bmod {19} & 0 & 1 & 7 & 7 & 11 & 6 & 11 & 1 & 1 & 11\\ \hline \end{array}$
For $x \equiv \pm 4, \pm 6, \pm 9 \pmod {19}$:
\(\ds x^6 + 1091\) | \(\equiv\) | \(\ds 11 + 8\) | \(\ds \pmod {19}\) | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds 0\) | \(\ds \pmod {19}\) |
showing that $x^6 + 1091$ is composite (divisible by $19$).
Thus we must require $x \not \equiv \pm 4, \pm 6, \pm 9 \pmod {19}$.
$\Box$
Below is a list of prime factorizations of $x^6 + 1091$, where $42 \divides x$ and does not end in $2$ or $8$.
If $x$ satisfies one of the above congruences, their remainder is listed instead.
\(\ds 84^6 + 1091\) | \(=\) | \(\ds 23 \times 15 \, 273 \, 827 \, 509\) | ||||||||||||
\(\ds 126\) | \(\equiv\) | \(\ds -4 \pmod {13}\) | ||||||||||||
\(\ds 210^6 + 1091\) | \(=\) | \(\ds 109 \times 786 \, 845 \, 146 \, 799\) | ||||||||||||
\(\ds 294\) | \(\equiv\) | \(\ds +9 \pmod {19}\) | ||||||||||||
\(\ds 336\) | \(\equiv\) | \(\ds -6 \pmod {19}\) | ||||||||||||
\(\ds 420\) | \(\equiv\) | \(\ds +4 \pmod {13}\) | ||||||||||||
\(\ds 504\) | \(\equiv\) | \(\ds -3 \pmod {13}\) | ||||||||||||
\(\ds 546^6 + 1091\) | \(=\) | \(\ds 2129 \times 12 \, 444 \, 578 \, 592 \, 403\) | ||||||||||||
\(\ds 630^6 + 1091\) | \(=\) | \(\ds 347 \times 41 \, 957 \times 4 \, 294 \, 468 \, 229\) | ||||||||||||
\(\ds 714\) | \(\equiv\) | \(\ds -1 \pmod {13}\) | ||||||||||||
\(\ds 756\) | \(\equiv\) | \(\ds -4 \pmod {19}\) | ||||||||||||
\(\ds 840\) | \(\equiv\) | \(\ds +4 \pmod {19}\) | ||||||||||||
\(\ds 924\) | \(\equiv\) | \(\ds +1 \pmod {13}\) | ||||||||||||
\(\ds 966\) | \(\equiv\) | \(\ds +4 \pmod {13}\) | ||||||||||||
\(\ds 1050\) | \(\equiv\) | \(\ds -3 \pmod {13}\) | ||||||||||||
\(\ds 1134\) | \(\equiv\) | \(\ds +3 \pmod {13}\) | ||||||||||||
\(\ds 1176^6 + 1091\) | \(=\) | \(\ds 34 \, 996 \, 691 \times 75 \, 581 \, 750 \, 737\) | ||||||||||||
\(\ds 1260\) | \(\equiv\) | \(\ds -1 \pmod {13}\) | ||||||||||||
\(\ds 1344^6 + 1091\) | \(=\) | \(\ds 11^2 \times 48 \, 709 \, 115 \, 345 \, 425 \, 307\) | ||||||||||||
\(\ds 1386^6 + 1091\) | \(=\) | \(\ds 6 \, 282 \, 607 \times 1 \, 128 \, 338 \, 710 \, 061\) | ||||||||||||
\(\ds 1470\) | \(\equiv\) | \(\ds +1 \pmod {13}\) | ||||||||||||
\(\ds 1544\) | \(\equiv\) | \(\ds -4 \pmod {19}\) | ||||||||||||
\(\ds 1596\) | \(\equiv\) | \(\ds -3 \pmod {13}\) | ||||||||||||
\(\ds 1680\) | \(\equiv\) | \(\ds +3 \pmod {13}\) | ||||||||||||
\(\ds 1764\) | \(\equiv\) | \(\ds -4 \pmod {13}\) | ||||||||||||
\(\ds 1806\) | \(\equiv\) | \(\ds -1 \pmod {13}\) | ||||||||||||
\(\ds 1890\) | \(\equiv\) | \(\ds -9 \pmod {19}\) | ||||||||||||
\(\ds 1974^6 + 1091\) | \(=\) | \(\ds 68 \, 891 \times 3 \, 944 \, 449 \times 217 \, 737 \, 913\) | ||||||||||||
\(\ds 2016\) | \(\equiv\) | \(\ds +1 \pmod {13}\) | ||||||||||||
\(\ds 2100\) | \(\equiv\) | \(\ds -9 \pmod {19}\) | ||||||||||||
\(\ds 2184^6 + 1091\) | \(=\) | \(\ds 199 \times 66 \, 919 \times 2 \, 135 \, 519 \times 3 \, 816 \, 013\) | ||||||||||||
\(\ds 2226\) | \(\equiv\) | \(\ds +3 \pmod {13}\) | ||||||||||||
\(\ds 2310\) | \(\equiv\) | \(\ds -4 \pmod {13}\) | ||||||||||||
\(\ds 2394^6 + 1091\) | \(=\) | \(\ds 41 \times 193 \times 587 \times 40 \, 528 \, 973 \, 983 \, 937\) | ||||||||||||
\(\ds 2436\) | \(\equiv\) | \(\ds +4 \pmod {19}\) | ||||||||||||
\(\ds 2520^6 + 1091\) | \(=\) | \(\ds 199 \times 1 \, 286 \, 915 \, 904 \, 764 \, 140 \, 709\) | ||||||||||||
\(\ds 2604\) | \(\equiv\) | \(\ds +4 \pmod {13}\) | ||||||||||||
\(\ds 2646^6 + 1091\) | \(=\) | \(\ds 383 \times 1 \, 100 \, 441 \times 814 \, 279 \, 501 \, 829\) | ||||||||||||
\(\ds 2730\) | \(\equiv\) | \(\ds -6 \pmod {19}\) | ||||||||||||
\(\ds 2814^6 + 1091\) | \(=\) | \(\ds 11 \times 23 \times 888 \, 416 \, 027 \times 2 \, 209 \, 060 \, 717\) | ||||||||||||
\(\ds 2856\) | \(\equiv\) | \(\ds -4 \pmod {13}\) | ||||||||||||
\(\ds 2940^6 + 1091\) | \(=\) | \(\ds 13 \, 163 \times 49 \, 060 \, 175 \, 921 \, 131 \, 657\) | ||||||||||||
\(\ds 3024^6 + 1091\) | \(=\) | \(\ds 4153 \times 2 \, 196 \, 011 \times 83 \, 848 \, 303 \, 249\) | ||||||||||||
\(\ds 3066^6 + 1091\) | \(=\) | \(\ds 47 \times 6577 \times 18 \, 839 \times 45 \, 869 \times 3 \, 109 \, 783\) | ||||||||||||
\(\ds 3150\) | \(\equiv\) | \(\ds +4 \pmod {13}\) | ||||||||||||
\(\ds 3234\) | \(\equiv\) | \(\ds -3 \pmod {13}\) | ||||||||||||
\(\ds 3276^6 + 1091\) | \(=\) | \(\ds 11 \times 2677 \times 41 \, 978 \, 054 \, 029 \, 285 \, 861\) | ||||||||||||
\(\ds 3360^6 + 1091\) | \(=\) | \(\ds 233 \times 9781 \times 300 \, 413 \times 2 \, 101 \, 734 \, 059\) | ||||||||||||
\(\ds 3444\) | \(\equiv\) | \(\ds -1 \pmod {13}\) | ||||||||||||
\(\ds 3486\) | \(\equiv\) | \(\ds +9 \pmod {19}\) | ||||||||||||
\(\ds 3570^6 + 1091\) | \(=\) | \(\ds 19 \, 379 \times 32 \, 911 \, 471 \times 3 \, 245 \, 866 \, 399\) | ||||||||||||
\(\ds 3654\) | \(\equiv\) | \(\ds +1 \pmod {13}\) | ||||||||||||
\(\ds 3696\) | \(\equiv\) | \(\ds +4 \pmod {13}\) | ||||||||||||
\(\ds 3780\) | \(\equiv\) | \(\ds -3 \pmod {13}\) | ||||||||||||
\(\ds 3864\) | \(\equiv\) | \(\ds +3 \pmod {13}\) | ||||||||||||
\(\ds 3906^6 + 1091\) | \(=\) | \(\ds 3 \, 551 \, 349 \, 655 \, 007 \, 944 \, 406 \, 147 \text { is prime}\) |
The above results are obtained using the "Alpertron" Integer factorization calculator.
The whole operation took approximately $1$ second.
$\blacksquare$