Odd Square Modulo 8

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \Z$ be an odd square.


Then $x \equiv 1 \pmod 8$.


Proof

Let $x \in \Z$ be an odd square.

Then $x = n^2$ where $n$ is also odd.

Thus $n$ can be expressed as $2 k + 1$ for some $k \in \Z$.

Hence:

\(\ds x\) \(=\) \(\ds n^2\)
\(\ds \) \(=\) \(\ds \paren {2 k + 1}^2\)
\(\ds \) \(=\) \(\ds 4 k^2 + 4 k + 1\)
\(\ds \) \(=\) \(\ds 4 k \paren {k + 1} + 1\)


But $k$ and $k + 1$ are of opposite parity and can therefore be expressed as $2 r$ and $2 s + 1$ (either way round).

\(\ds x\) \(=\) \(\ds 4 k \paren {k + 1} + 1\)
\(\ds \) \(=\) \(\ds 4 \paren {2 r} \paren {2 s + 1} + 1\)
\(\ds \) \(=\) \(\ds 8 r \paren {2 s + 1} + 1\)

Hence the result.

$\blacksquare$


Examples

$49$ Modulo $8$

\(\ds 49\) \(=\) \(\ds 7^2\)
\(\ds \) \(=\) \(\ds \paren {6 \times 8} + 1\)


$169$ Modulo $8$

\(\ds 169\) \(=\) \(\ds 13^2\)
\(\ds \) \(=\) \(\ds \paren {21 \times 8} + 1\)


Also see


Sources