Open Cover with Closed Locally Finite Refinement is Even Cover/Lemma 3

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $T = \struct {X, \tau}$ be a topological Space.


Let $\UU$ be an open cover of $T$.


Let $\AA$ be a closed locally finite refinement of $\UU$.

For each $A \in \AA$, let $U_A \in \UU$ such that $A \subseteq U_A$.

For each $A \in \AA$, let:

$V_A = \paren {U_A \times U_A} \cup \paren {\paren {X \setminus A} \times \paren {X \setminus A} }$

For each $x \in X, A \in \AA$, let:

$\map {V_A} x = \set {y \in X : \tuple {x, y} \in V_A}$

where:

$V_A$ is seen as a relation on $X \times X$
$\map {V_A} x$ denotes the image of $x$ under $V_A$.


Then:

$\forall A \in \AA, x \in A : \map {V_A} x = U_A$


Proof

We have:

\(\ds \forall A \in \AA, x \in A: \, \) \(\ds \map {V_A} x\) \(=\) \(\ds \set {y \in X : \tuple{x, y} \in V_A}\) Definition of $\map {V_A} x$
\(\ds \) \(=\) \(\ds \set {y \in X : \tuple {x, y} \in \paren {U_A \times U_A} \cup \paren {\paren {X \setminus A} \times \paren {X \setminus A} } }\) Definition of $V_A$
\(\ds \) \(=\) \(\ds \set {y \in X : \tuple {x, y} \in U_A \times U_A \text{ or } \tuple {x, y} \in \paren {X \setminus A} \times \paren {X \setminus A} }\) Definition of Set Union
\(\ds \) \(=\) \(\ds \set {y \in X : \tuple {x, y} \in U_A \times U_A}\) as $x \in A$
\(\ds \) \(=\) \(\ds \set {y \in X : y \in U_A}\) Definition of Cartesian Product
\(\ds \) \(=\) \(\ds U_A\) Definition of Set

$\blacksquare$