Open Extension Space is Ultraconnected

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T = \left({S, \tau}\right)$ be a topological space.

Let $T^*_{\bar p} = \left({S^*_p, \tau^*_{\bar p}}\right)$ be the open extension space of $T$.


Then $T^*_{\bar p}$ is ultraconnected.


Proof

Apart from $S^*_p$, every open set of $T^*_{\bar p}$ does not contain $p$, by definition of open extension space.

So, apart from $\varnothing$, every closed set of $T$ does contain $p$, by definition of closed set.

So every pair of closed sets of $T$ has an intersection which contains at least $p$.

So there are no non-empty disjoint closed sets of $T$.

Hence the result, by definition of ultraconnected.

$\blacksquare$


Sources