Operations of Boolean Algebra are Associative
Jump to navigation
Jump to search
Theorem
Let $\struct {S, \vee, \wedge, \neg}$ be a Boolean algebra, defined as in Definition 1.
Then:
\(\ds \forall a, b, c \in S: \, \) | \(\ds \paren {a \wedge b} \wedge c\) | \(=\) | \(\ds a \wedge \paren {b \wedge c}\) | |||||||||||
\(\ds \forall a, b, c \in S: \, \) | \(\ds \paren {a \vee b} \vee c\) | \(=\) | \(\ds a \vee \paren {b \vee c}\) |
That is, both $\vee$ and $\wedge$ are associative operations.
Proof
Let $a, b, c \in S$.
Let:
- $x = a \wedge \paren {b \wedge c}$
- $y = \paren {a \wedge b} \wedge c$
Then:
\(\ds a \vee x\) | \(=\) | \(\ds a \vee \paren {a \wedge \paren {b \wedge c} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a \vee a} \wedge \paren {a \vee \paren {b \wedge c} }\) | Boolean Algebra: Axiom $(\text {BA}_1 2)$: both $\vee$ and $\wedge$ distribute over the other | |||||||||||
\(\ds \) | \(=\) | \(\ds a \wedge \paren {a \vee \paren {b \wedge c} }\) | Operations of Boolean Algebra are Idempotent | |||||||||||
\(\ds \) | \(=\) | \(\ds a\) | Absorption Laws (Boolean Algebras) |
Similarly:
\(\ds a \vee y\) | \(=\) | \(\ds a \vee \paren {\paren {a \wedge b} \wedge c}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a \vee \paren {a \wedge b} } \wedge \paren {a \vee c}\) | Boolean Algebra: Axiom $(\text {BA}_1 2)$: both $\vee$ and $\wedge$ distribute over the other | |||||||||||
\(\ds \) | \(=\) | \(\ds a \wedge \paren {a \vee c}\) | Absorption Laws (Boolean Algebras) | |||||||||||
\(\ds \) | \(=\) | \(\ds a\) | Absorption Laws (Boolean Algebras) |
Thus we see we have $a \vee x = a \vee y$.
Next:
\(\ds \neg a \vee x\) | \(=\) | \(\ds \neg a \vee \paren {a \wedge \paren {b \wedge c} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\neg a \vee a} \wedge \paren {\neg a \vee \paren {b \wedge c} }\) | Boolean Algebra: Axiom $(\text {BA}_1 2)$: both $\vee$ and $\wedge$ distribute over the other | |||||||||||
\(\ds \) | \(=\) | \(\ds \top \wedge \paren {\neg a \vee \paren {b \wedge c} }\) | Boolean Algebra: Axiom $(\text {BA}_1 4)$: $\neg a \vee a = \top$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \neg a \vee \paren {b \wedge c}\) | Boolean Algebra: Axiom $(\text {BA}_1 3)$: $\top$ is the identity of $\wedge$ |
Similarly:
\(\ds \neg a \vee y\) | \(=\) | \(\ds \neg a \vee \paren {\paren {a \wedge b} \wedge c}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\neg a \vee \paren {a \wedge b} } \wedge \paren {\neg a \vee c}\) | Boolean Algebra: Axiom $(\text {BA}_1 2)$: both $\vee$ and $\wedge$ distribute over the other | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {\neg a \vee a} \wedge \paren {\neg a \vee b} } \wedge \paren {\neg a \vee c}\) | Boolean Algebra: Axiom $(\text {BA}_1 2)$: both $\vee$ and $\wedge$ distribute over the other | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\top \wedge \paren {\neg a \vee b} } \wedge \paren {\neg a \vee c}\) | Boolean Algebra: Axiom $(\text {BA}_1 4)$: $\neg a \vee a = \top$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\neg a \vee b} \wedge \paren {\neg a \vee c}\) | Boolean Algebra: Axiom $(\text {BA}_1 3)$: $\top$ is the identity of $\wedge$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \neg a \vee \paren {b \wedge c}\) | Boolean Algebra: Axiom $(\text {BA}_1 2)$: both $\vee$ and $\wedge$ distribute over the other |
Thus we see we have $\neg a \vee x = \neg a \vee y$.
In conclusion, we have:
- $a \vee x = a \vee y$
- $\neg a \vee x = \neg a \vee y$
Hence $x = y$ by Cancellation of Join in Boolean Algebra, that is:
- $\paren {a \wedge b} \wedge c = a \wedge \paren {b \wedge c}$
$\Box$
The result:
- $\paren {a \vee b} \vee c = a \vee \paren {b \vee c}$
follows from the Duality Principle.
$\blacksquare$
Sources
- 1964: W.E. Deskins: Abstract Algebra ... (previous) ... (next): $\S 1.5$: Theorem $1.16$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Boolean algebra
- 2008: Paul Halmos and Steven Givant: Introduction to Boolean Algebras ... (previous) ... (next): $\S 2$: Exercise $2$
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Boolean algebra