Order of Symmetric Group
Jump to navigation
Jump to search
Theorem
Let $S$ be a finite set of cardinality $n$.
Let $\struct {\map \Gamma S, \circ}$ be the symmetric group on $S$.
Then $\struct {\map \Gamma S, \circ}$ has $n!$ elements (see factorial).
Proof
A direct application of Cardinality of Set of Bijections.
$\blacksquare$
Examples
$3$rd Symmetric Group
Let $S = \set {1, 2, 3}$.
There are $3 \times 2 \times 1 = 6$ permutations on $S$:
- $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}$
- $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$
and so $\struct {\map \Gamma S, \circ}$ has $6$ elements.
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 4.5$. Examples of groups: Example $79$
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 7$: Semigroups and Groups: Example $7.5$
- 1966: Richard A. Dean: Elements of Abstract Algebra ... (previous) ... (next): $\S 1.6$
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: Examples of Group Structure: $\S 30 \alpha$
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: Subgroups and Cosets: $\S 38$
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: The Symmetric Groups: $\S 78$
- 1974: Thomas W. Hungerford: Algebra ... (previous) ... (next): $\text{I}$: Groups: $\S 1$: Semigroups, Monoids and Groups
- 1974: Thomas W. Hungerford: Algebra ... (previous) ... (next): $\text{I}$: Groups: $\S 1$: Semigroups, Monoids and Groups: Exercise $5$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): symmetric group