Ordering on 1-Based Natural Numbers is Transitive

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\N_{> 0}$ be the $1$-based natural numbers.

Let $<$ be the strict ordering on $\N_{>0}$.


Then $<$ is a transitive relation.


Proof

Let $a < b$ and $b < c$.

Then:

\(\ds \exists x \in \N_{> 0}: \, \) \(\ds a + x\) \(=\) \(\ds b\)
\(\ds \land \ \ \) \(\ds \exists y \in \N_{> 0}: \, \) \(\ds b + y\) \(=\) \(\ds c\)
\(\ds \leadsto \ \ \) \(\ds \paren {a + x} + y\) \(=\) \(\ds c\) substituting $a + x$ for $b$
\(\ds \leadsto \ \ \) \(\ds a + \paren {x + y}\) \(=\) \(\ds c\) Natural Number Addition is Associative
\(\ds \leadsto \ \ \) \(\ds a\) \(<\) \(\ds c\) as $x + y \in \N_{> 0}$

$\blacksquare$


Sources