Ore Number/Examples/28

From ProofWiki
Jump to navigation Jump to search

Example of Ore Number

$H \left({28}\right) = 3$

where $H \left({n}\right)$ denotes the harmonic mean of the divisors of $n$.


Proof

From Harmonic Mean of Divisors in terms of Tau and Sigma:

$H \left({n}\right) = \dfrac {n \, \tau \left({n}\right)} {\sigma \left({n}\right)}$

where:

$\tau \left({n}\right)$ denotes the $\tau$ (tau) function: the number of divisors of $n$
$\sigma \left({n}\right)$ denotes the $\sigma$ (sigma) function: the sum of the divisors of $n$.


\(\displaystyle \tau \left({28}\right)\) \(=\) \(\displaystyle 6\) $\tau$ of $28$
\(\displaystyle \sigma \left({28}\right)\) \(=\) \(\displaystyle 56\) $\sigma$ of $28$
\(\displaystyle \leadsto \ \ \) \(\displaystyle \dfrac {28 \, \tau \left({28}\right)} {\sigma \left({28}\right)}\) \(=\) \(\displaystyle \dfrac {28 \times 6} {56}\)
\(\displaystyle \) \(=\) \(\displaystyle 3\)

$\blacksquare$