P-Seminorm is Seminorm
Theorem
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $p \in \hointr 1 \infty$.
Let $\map {\LL^p} {X, \Sigma, \mu}$ be the Lebesgue $p$-space on $\struct {X, \Sigma, \mu}$.
Let $\norm {\, \cdot \,}_p$ be the $p$-seminorm on $\map {\LL^p} {X, \Sigma, \mu}$.
Then $\norm {\, \cdot \,}_p$ is a seminorm on $\map {\LL^p} {X, \Sigma, \mu}$.
Proof
Let $f \in \map {\LL^p} {X, \Sigma, \mu}$.
From the construction of the integral of a positive $\Sigma$-measurable function, we have:
- $\ds \paren {\int \size f^p \rd \mu}^{1/p} \ge 0$
so:
- $\norm f_p \ge 0$
We also have:
- $\ds \int \size f^p \rd \mu < \infty$
So $\norm {\, \cdot \,}$ maps from $\map {\LL^p} {X, \Sigma, \mu}$ to the non-negative reals.
We now verify Seminorm Axiom $\text N 2$: Positive Homogeneity and Seminorm Axiom $\text N 3$: Triangle Inequality.
Proof of Seminorm Axiom $\text N 2$: Positive Homogeneity
Let $f \in \map {\LL^p} {X, \Sigma, \mu}$ and $\lambda \in \R$, we have:
\(\ds \norm {\lambda f}_p\) | \(=\) | \(\ds \paren {\int \size {\lambda f}^p \rd \mu}^{1/p}\) | Definition of P-Seminorm | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\int \size \lambda^p \size f^p \rd \mu}^{1/p}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\size \lambda^p \int \size f^p \rd \mu}^{1/p}\) | Integral of Positive Measurable Function is Positive Homogeneous | |||||||||||
\(\ds \) | \(=\) | \(\ds \size \lambda \paren {\int \size f^p \rd \mu}^{1/p}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size \lambda \norm f_p\) | Definition of P-Seminorm |
$\Box$
Proof of Seminorm Axiom $\text N 3$: Triangle Inequality
This is Minkowski's Inequality on Lebesgue Space.
$\blacksquare$