P-Sequence Space of Real Sequences is Metric Space
Theorem
Let $A$ be the set of all real sequences $\sequence {x_i}$ such that the series $\ds \sum_{i \mathop \ge 0} x_i^2$ is convergent.
Let $d_p$ be the $p$-sequence metric on $\R$.
Then $\ell^p := \struct {A, d_p}$ is a metric space.
Proof
By definition of the $p$-sequence metric on $\R$:
Let $A$ be the set of all real sequences $\sequence {x_i}$ such that the series $\ds \sum_{i \mathop \ge 0} x_i^2$ is convergent.
Then $\ell^p := \struct {A, d_2}$ where $d_p: A \times A: \to \R$ is the real-valued function defined as:
- $\ds \forall x = \sequence {x_i}, y = \sequence {y_i} \in A: \map {d_p} {x, y} := \paren {\sum_{k \mathop \ge 0} \size {x_k - y_k}^p}^{\frac 1 p}$
Proof of Metric Space Axiom $(\text M 1)$
\(\ds \map {d_p} {x, x}\) | \(=\) | \(\ds \paren {\sum_{k \mathop \ge 0} \size {x_k - x_k}^p}^{\frac 1 p}\) | Definition of $d_p$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sum_{k \mathop \ge 0} 0^p}^{\frac 1 p}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
So Metric Space Axiom $(\text M 1)$ holds for $d_p$.
$\Box$
Proof of Metric Space Axiom $(\text M 2)$: Triangle Inequality
Let $z = \sequence {z_i}\in A$.
![]() | This article needs to be linked to other articles. In particular: Minkowski's inequality currently only applies to finite sums You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
\(\ds \map {d_p} {x, y} + \map {d_p} {y, z}\) | \(=\) | \(\ds \paren {\sum_{k \mathop \ge 0} \size {x_k - y_k}^p}^{\frac 1 p} + \paren {\sum_{k \mathop \ge 0} \size {y_k - z_k}^p}^{\frac 1 p}\) | Definition of $d_p$ | |||||||||||
\(\ds \) | \(\ge\) | \(\ds \paren {\sum_{k \mathop \ge 0} \size {x_k - z_k}^p}^{\frac 1 p}\) | Minkowski's Inequality for Sums | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {d_p} {x, z}\) | Definition of $d_p$ |
So Metric Space Axiom $(\text M 2)$: Triangle Inequality holds for $d_p$.
$\Box$
Proof of Metric Space Axiom $(\text M 3)$
\(\ds \map {d_p} {x, y}\) | \(=\) | \(\ds \paren {\sum_{k \mathop \ge 0} \size {x_k - y_k}^p}^{\frac 1 p}\) | Definition of $d_2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sum_{k \mathop \ge 0} \size {y_k - x_k}^p}^{\frac 1 p}\) | Definition of Absolute Value | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {d_p} {y, x}\) | Definition of $d_p$ |
So Metric Space Axiom $(\text M 3)$ holds for $d_p$.
$\Box$
Proof of Metric Space Axiom $(\text M 4)$
\(\ds x\) | \(\ne\) | \(\ds y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists k \in \N: \, \) | \(\ds x_k\) | \(\ne\) | \(\ds y_k\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x_k - y_k}^p\) | \(>\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\sum_{k \mathop \ge 0} \size {x_k - y_k}^p}^{\frac 1 p}\) | \(>\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map {d_p} {x, y}\) | \(>\) | \(\ds 0\) | Definition of $d_p$ |
So Metric Space Axiom $(\text M 4)$ holds for $d_p$.
$\blacksquare$
Sources
- 1975: W.A. Sutherland: Introduction to Metric and Topological Spaces ... (previous) ... (next): $2$: Continuity generalized: metric spaces: $2.2$: Examples: Example $2.2.18$