Parseval's Theorem/Formulation 2
Jump to navigation
Jump to search
![]() | This article needs to be linked to other articles. In particular: Some of the symbology needs to be expanded upon, and the link to Fourier series needs to be the complex version (still to be documented) You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Theorem
Let $f$ be a real function which is square-integrable over the interval $\openint {-\pi} \pi$.
Let $f$ be expressed by the Fourier series:
- $\map f x = \ds \sum_{n \mathop = -\infty}^\infty c_n e^{i n x}$
where:
- $c_n = \ds \frac 1 {2 \pi} \int_{-\pi}^\pi \map f t e^{-i n t} \rd t$
Then:
- $\ds \frac 1 {2 \pi} \int_{-\pi}^\pi \size {\map f x}^2 \rd x = \sum_{n \mathop = -\infty}^\infty \size {c_n}^2$
Proof
\(\ds \frac 1 {2 \pi} \int_{-\pi}^\pi \size {\map f x}^2 \rd x\) | \(=\) | \(\ds \frac 1 {2 \pi} \int_{-\pi}^\pi \map f x \overline {\map f x} \rd x\) | Modulus in Terms of Conjugate | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 \pi} \int_{-\pi}^\pi \sum_{n \mathop = -\infty}^\infty c_n e^{i n x} \overline {\sum_{m \mathop = -\infty}^\infty c_m e^{i m x} } \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 \pi} \int_{-\pi}^\pi \sum_{n \mathop = -\infty}^\infty c_n e^{i n x} \sum_{m \mathop = -\infty}^\infty \overline {c_m} e^{-i m x} \rd x\) | Sum of Complex Conjugates | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 \pi} \int_{-\pi}^\pi \sum_{n \mathop = -\infty}^\infty \sum_{m \mathop = -\infty}^\infty c_n \overline {c_m} e^{i x \paren {n - m} } \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 \pi} \sum_{n \mathop = -\infty}^\infty \sum_{m \mathop = -\infty}^\infty c_n \overline {c_m} \int_{-\pi}^\pi e^{i x \paren {n - m} } \rd x\) | Fubini's Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 \pi} \sum_{n \mathop = -\infty}^\infty \sum_{m \mathop = -\infty}^\infty c_n \overline {c_m} 2 \pi \delta_{n m}\) | Integral over 2 pi of Exponential of i by n x | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 \pi} {2 \pi} \sum_{n \mathop = -\infty}^\infty c_n \overline {c_n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = -\infty}^\infty \size {c_n}^2\) |
$\blacksquare$
Source of Name
This entry was named for Marc-Antoine Parseval.