Parseval's Theorem/Formulation 2

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $f$ be a real function which is square-integrable over the interval $\openint {-\pi} \pi$.

Let $f$ be expressed by the Fourier series:

$\map f x = \ds \sum_{n \mathop = -\infty}^\infty c_n e^{i n x}$

where:

$c_n = \ds \frac 1 {2 \pi} \int_{-\pi}^\pi \map f t e^{-i n t} \rd t$


Then:

$\ds \frac 1 {2 \pi} \int_{-\pi}^\pi \size {\map f x}^2 \rd x = \sum_{n \mathop = -\infty}^\infty \size {c_n}^2$


Proof

\(\ds \frac 1 {2 \pi} \int_{-\pi}^\pi \size {\map f x}^2 \rd x\) \(=\) \(\ds \frac 1 {2 \pi} \int_{-\pi}^\pi \map f x \overline {\map f x} \rd x\) Modulus in Terms of Conjugate
\(\ds \) \(=\) \(\ds \frac 1 {2 \pi} \int_{-\pi}^\pi \sum_{n \mathop = -\infty}^\infty c_n e^{i n x} \overline {\sum_{m \mathop = -\infty}^\infty c_m e^{i m x} } \rd x\)
\(\ds \) \(=\) \(\ds \frac 1 {2 \pi} \int_{-\pi}^\pi \sum_{n \mathop = -\infty}^\infty c_n e^{i n x} \sum_{m \mathop = -\infty}^\infty \overline {c_m} e^{-i m x} \rd x\) Sum of Complex Conjugates
\(\ds \) \(=\) \(\ds \frac 1 {2 \pi} \int_{-\pi}^\pi \sum_{n \mathop = -\infty}^\infty \sum_{m \mathop = -\infty}^\infty c_n \overline {c_m} e^{i x \paren {n - m} } \rd x\)
\(\ds \) \(=\) \(\ds \frac 1 {2 \pi} \sum_{n \mathop = -\infty}^\infty \sum_{m \mathop = -\infty}^\infty c_n \overline {c_m} \int_{-\pi}^\pi e^{i x \paren {n - m} } \rd x\) Fubini's Theorem
\(\ds \) \(=\) \(\ds \frac 1 {2 \pi} \sum_{n \mathop = -\infty}^\infty \sum_{m \mathop = -\infty}^\infty c_n \overline {c_m} 2 \pi \delta_{n m}\) Integral over 2 pi of Exponential of i by n x
\(\ds \) \(=\) \(\ds \frac {2 \pi} {2 \pi} \sum_{n \mathop = -\infty}^\infty c_n \overline {c_n}\)
\(\ds \) \(=\) \(\ds \sum_{n \mathop = -\infty}^\infty \size {c_n}^2\)

$\blacksquare$


Source of Name

This entry was named for Marc-Antoine Parseval.