Poisson Distribution Gives Rise to Probability Mass Function
Jump to navigation
Jump to search
Theorem
Let $X$ be a discrete random variable on a probability space $\struct {\Omega, \Sigma, \Pr}$.
Let $X$ have the poisson distribution with parameter $\lambda$ (where $\lambda > 0$).
Then $X$ gives rise to a probability mass function.
Proof
By definition:
- $\Img X = \N$
- $\map \Pr {X = k} = \dfrac 1 {k!} \lambda^k e^{-\lambda}$
Then:
\(\ds \map \Pr \Omega\) | \(=\) | \(\ds \sum_{k \mathop \in \N} \frac 1 {k!} \lambda^k e^{-\lambda}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{-\lambda} \sum_{k \mathop \in \N} \frac 1 {k!} \lambda^k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{-\lambda} e^{\lambda}\) | Taylor Series Expansion for Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
So $X$ satisfies $\map \Pr \Omega = 1$, and hence the result.
$\blacksquare$
Sources
- 1986: Geoffrey Grimmett and Dominic Welsh: Probability: An Introduction ... (previous) ... (next): $\S 2.2$: Examples