Poisson Distribution Gives Rise to Probability Mass Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a discrete random variable on a probability space $\struct {\Omega, \Sigma, \Pr}$.


Let $X$ have the poisson distribution with parameter $\lambda$ (where $\lambda > 0$).


Then $X$ gives rise to a probability mass function.


Proof

By definition:

$\Img X = \N$
$\map \Pr {X = k} = \dfrac 1 {k!} \lambda^k e^{-\lambda}$

Then:

\(\ds \map \Pr \Omega\) \(=\) \(\ds \sum_{k \mathop \in \N} \frac 1 {k!} \lambda^k e^{-\lambda}\)
\(\ds \) \(=\) \(\ds e^{-\lambda} \sum_{k \mathop \in \N} \frac 1 {k!} \lambda^k\)
\(\ds \) \(=\) \(\ds e^{-\lambda} e^{\lambda}\) Taylor Series Expansion for Exponential Function
\(\ds \) \(=\) \(\ds 1\)


So $X$ satisfies $\map \Pr \Omega = 1$, and hence the result.

$\blacksquare$


Sources