Poisson Summation Formula
Jump to navigation
Jump to search
Theorem
Let $f: \R \to \C$ be a Schwarz function.
Let $\hat f$ be its Fourier transform.
Then:
- $\ds \sum_{n \mathop \in \Z} \map f n = \sum_{m \mathop \in \Z} \map {\hat f} m$
Proof
Let:
- $\ds \map F x = \sum_{n \mathop \in \Z} \map f {x + n}$
Then $\map F x$ is $1$-periodic (because of absolute convergence), and has Fourier coefficients:
\(\ds \hat F_k\) | \(=\) | \(\ds \int_0^1 \sum_{n \mathop \in \Z} \map f {x + n} e^{-2\pi i k x} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop \in \Z} \int_0^1 \map f {x + n} e^{-2\pi i k x} \rd x\) | because $f$ is Schwarz, so convergence is uniform | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop \in \Z} \int_n^{n + 1} \map f x e^{-2\pi i k x} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_\R \map f x e^{-2\pi i k x} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {\hat f} k\) | where $\hat f$ is the Fourier transform of $f$ |
Therefore by the definition of the Fourier series of $f$:
- $\ds \map F x = \sum_{k \mathop \in \Z} \map {\hat f} k e^{i k x}$
Choosing $x = 0$ in this formula:
- $\ds \sum_{n \mathop \in \Z} \map f n = \sum_{k \mathop \in \Z} \map {\hat f} k$
as required.
$\blacksquare$
Source of Name
This entry was named for Siméon-Denis Poisson.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 19$: The Poisson Summation Formula: $19.46$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 21$: Series of Constants: The Poisson Summation Formula: $21.46.$