Power Function to Rational Power permits Unique Continuous Extension

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a \in \R_{> 0}$.

Let $f: \Q \to \R$ be the real-valued function defined as:

$\map f q = a^q$

where $a^q$ denotes $a$ to the power of $q$.


Then there exists a unique continuous extension of $f$ to $\R$.


Proof

Consider $I_k := \openint {-k} k$ for arbitrary $k \in \N$.

Let $I_k' = I_k \cap \Q$.

Note that, for all $x, y \in I_k'$:

\(\ds \size {a^x - a^y}\) \(=\) \(\ds \size {a^{x - y + y} - a^y}\)
\(\ds \) \(=\) \(\ds \size {a^{x - y} a^y - a^y}\) Powers of Group Elements
\(\ds \) \(=\) \(\ds \size {a^y} \size {a^{x - y} - 1}\) Absolute Value Function is Completely Multiplicative
\(\ds \) \(=\) \(\ds a^y \size {a^{x - y} - 1}\) Power of Positive Real Number is Positive over Rationals
\(\ds \) \(\le\) \(\ds M \size {a^{x - y} - 1}\) Power Function is Monotone over Rationals

where $M = \map \max {a^{-k}, a^k}$.


Fix $\epsilon \in \R_{> 0}$.

From Power Function tends to One as Power tends to Zero: Rational Number:

\(\ds \exists \delta \in \R_{>0}: \, \) \(\ds 0\) \(<\) \(\, \ds \size {x - y} \, \) \(\, \ds < \, \) \(\ds \delta\)
\(\ds \leadsto \ \ \) \(\ds \) \(\) \(\, \ds \size {a^{x - y} - a^0} \, \) \(\, \ds < \, \) \(\ds \dfrac \epsilon M\)
\(\ds \leadsto \ \ \) \(\ds \) \(\) \(\, \ds \size {a^{x - y} - 1} \, \) \(\, \ds < \, \) \(\ds \dfrac \epsilon M\) Definition of Power of Zero

where $M$ is defined as above.


Therefore, $\exists \delta \in \R_{> 0}$ such that:

\(\ds \size {x - y}\) \(<\) \(\ds \delta\)
\(\ds \leadsto \ \ \) \(\ds \size {a^x - a^y}\) \(\le\) \(\ds M \size {a^{x - y} - 1}\)
\(\ds \) \(<\) \(\ds M \dfrac \epsilon M\)
\(\ds \) \(=\) \(\ds \epsilon\)

That is, $f$ is uniformly continuous on $I_k'$.


From Rationals are Everywhere Dense in Topological Space of Reals, $I_k'$ is everywhere dense in $I_k$.

From Continuous Extension from Dense Subset, there exists a unique continuous extension of $f$ to $I_k$.

Call this function $f_k$.

Define:

$\ds F = \bigcup \set {f_k : k \in \N}$

Note that $\sequence {I_k}$ is an exhausting sequence of sets in $\R$.

By the Union of Functions Theorem, $F$ defines a function $\R \to \R$

From the Pasting Lemma, $F$ is continuous on $\R$.

Hence the result.

$\blacksquare$