Absolute Value Function is Completely Multiplicative
Theorem
Let $x, y \in \R$ be real numbers.
Then:
- $\size {x y} = \size x \size y$
where $\size x$ denotes the absolute value of $x$.
Thus the absolute value function is completely multiplicative.
Proof 1
Let either $x = 0$ or $y = 0$, or both.
We have that $\size 0 = 0$ by definition of absolute value.
Hence:
- $\size x \size y = 0 = x y = \size {x y}$
Let $x > 0$ and $y > 0$.
Then:
\(\ds x y\) | \(>\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x y}\) | \(=\) | \(\ds x y\) | Definition of Absolute Value |
and:
\(\ds x\) | \(=\) | \(\ds \size x\) | Definition of Absolute Value | |||||||||||
\(\ds y\) | \(=\) | \(\ds \size y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size x \size y\) | \(=\) | \(\ds x y\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {x y}\) |
Let $x < 0$ and $y < 0$.
Then:
\(\ds x y\) | \(>\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x y}\) | \(=\) | \(\ds x y\) | Definition of Absolute Value |
and:
\(\ds -x\) | \(=\) | \(\ds \size x\) | Definition of Absolute Value | |||||||||||
\(\ds -y\) | \(=\) | \(\ds \size y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size x \size y\) | \(=\) | \(\ds \paren {-x} \paren {-y}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds xy\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size {x y}\) |
The final case is where one of $x$ and $y$ is positive, and one is negative.
Without loss of generality, let $x < 0$ and $y > 0$.
Then:
\(\ds x y\) | \(<\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x y}\) | \(=\) | \(\ds -\paren {x y}\) | Definition of Absolute Value |
and:
\(\ds -x\) | \(=\) | \(\ds \size x\) | Definition of Absolute Value | |||||||||||
\(\ds y\) | \(=\) | \(\ds \size y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size x \size y\) | \(=\) | \(\ds \paren {-x} y\) | |||||||||||
\(\ds \) | \(=\) | \(\ds -\paren {x y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size {x y}\) |
The case where $x > 0$ and $y < 0$ is the same.
$\blacksquare$
Proof 2
Let $x$ and $y$ be considered as complex numbers which are wholly real.
That is:
- $x = x + 0 i, y = y + 0 i$
From Complex Modulus of Real Number equals Absolute Value, the absolute value of $x$ and $y$ equal the complex moduli of $x + 0 i$ and $y + 0 i$.
Thus $\cmod x \cmod y$ can be interpreted as the complex modulus of $x$ multiplied by the complex modulus of $y$.
By Complex Modulus of Product of Complex Numbers:
- $\cmod x \cmod y = \cmod {x y}$
As $x$ and $y$ are both real, so is $x y$.
Thus by Complex Modulus of Real Number equals Absolute Value, $\cmod {x y}$ can be interpreted as the absolute value of $x y$ as well as its complex modulus.
$\blacksquare$
Proof 3
\(\ds \size {x y}\) | \(=\) | \(\ds \sqrt {\paren {x y}^2}\) | Definition 2 of Absolute Value | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {x^2 y^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {x^2} \sqrt{y^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size x \cdot \size y\) | Definition 2 of Absolute Value |
$\blacksquare$
Proof 4
Follows directly from:
$\blacksquare$
Sources
- 2003: John H. Conway and Derek A. Smith: On Quaternions And Octonions ... (previous) ... (next): $\S 1$: The Complex Numbers: Introduction: $1.1$: The Algebra $\R$ of Real Numbers
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): absolute value: $\text {(i)}$
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): absolute value: $\text {(i)}$