Power Series Expansion for Reciprocal of 1 + x/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ such that $-1 < x < 1$.

Then:

\(\ds \dfrac 1 {1 + x}\) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k x^k\)
\(\ds \) \(=\) \(\ds 1 - x + x^2 - x^3 + x^4 - \cdots\)


Proof

\(\ds \frac 1 {1 + x}\) \(=\) \(\ds \frac 1 {1 - \paren {-x} }\)
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-x}^k\) Sum of Infinite Geometric Sequence
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k x^k\)

$\blacksquare$