Power Set is Closed under Complement
Jump to navigation
Jump to search
Theorem
Let $S$ be a set.
Let $\powerset S$ be the power set of $S$.
Then:
- $\forall A \in \powerset S: \relcomp S A \in \powerset S$
where $\relcomp S A$ denotes the complement of $A$ relative to $S$.
Proof
\(\ds A\) | \(\in\) | \(\ds \powerset S\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds A\) | \(\subseteq\) | \(\ds S\) | Definition of Power Set | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds S \setminus A\) | \(\subseteq\) | \(\ds S\) | Set Difference is Subset | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \relcomp S A\) | \(\subseteq\) | \(\ds S\) | Definition of Relative Complement | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \relcomp S A\) | \(\in\) | \(\ds \powerset S\) | Definition of Power Set |
$\blacksquare$