Preimage of Union under Mapping/General Result

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

Let $f: S \to T$ be a mapping.

Let $\powerset T$ be the power set of $T$.

Let $\mathbb T \subseteq \powerset T$.


Then:

$\displaystyle f^{-1} \sqbrk {\bigcup \mathbb T} = \bigcup_{X \mathop \in \mathbb T} f^{-1} \sqbrk X$


Proof

As $f$, being a mapping, is also a relation, we can apply Preimage of Union under Relation: General Result:

$\displaystyle \RR^{-1} \sqbrk {\bigcup \mathbb T} = \bigcup_{X \mathop \in \mathbb T} \RR^{-1} \sqbrk X$

$\blacksquare$


Sources