Primitive of Function of a x + b
Jump to navigation
Jump to search
Theorem
- $\ds \int \map F {a x + b} \rd x = \frac 1 a \int \map F u \rd u$
where $u = a x + b$.
Proof
\(\ds u\) | \(=\) | \(\ds a x + b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds a\) | Derivative of Function of Constant Multiple: Corollary | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \map F {a x + b} \rd x\) | \(=\) | \(\ds \int \frac {\map F u} a \d u\) | Primitive of Composite Function | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \int \map F u \rd u\) | Primitive of Constant Multiple of Function |
$\blacksquare$
Sources
- 1945: A. Geary, H.V. Lowry and H.A. Hayden: Advanced Mathematics for Technical Students, Part I ... (previous) ... (next): Chapter $\text {III}$: Integration: Three rules for integration: $\text {III}$
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Integration
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Important Transformations: $14.49$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 16$: Indefinite Integrals: Important Transformations: $16.49.$